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Abstract

I develop and estimate a general equilibrium model for the term structures of nominal and
real interest rates in the UK that incorporates Markov-switching. The model allows for non-
neutralities, nonlinear dynamics, and flexibility in the dynamics of the risk premia - features that
are all present in the data. I use the model to assess how accurately the term structure reflects
changing expectations of future yields and inflation. This analysis shows that the presence of
time-varying risk premia make it very hard to accurately track changes in the expected path of
real or nominal yields over horizons of less than five years. By contrast, variations in inflation
expected over the next two to three years are very accurately reflected by changes in spread
between real and nominal yields, or by changes in nominal yields alone. Over longer horizons,
the term structures closely track changing expectations regarding future nominal and real yields

but not future inflation.
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I. Introduction

How accurately does the term structure of interest rates reflect expectations regarding future yields and
inflation? This is an old and important question for researchers and policy-makers alike, but it has yet to
be precisely answered. After more than a decade of regression-based tests rejecting forms of the expecta-
tions hypothesis, it appears that changing expectations and time-varying risk premia both contribute to
the dynamics of the term structure.? To date, however, no consensus has emerged around a model that
incorporates both facets. Without such a model, it is impossible to accurately assess the degree to which
variations in the current term structure reflect changing expectations or risk premia.

This paper develops a new model with the aim of quantifying the influence of time-varying risk premia
on the behavior of the UK term structure. Following Cox, Ingersoll and Ross (1985) (CIR), a large literature
has developed using general equilibrium bond-pricing models to study the behavior of the US nominal term
structure. In this paper, I focus on UK interest rates in order to exploit the information contained in the
term structures of real and nominal yields. There has been a well-established market for both conventional
and index-linked debt in the UK for the past seventeen years. In Evans (1998a) I showed how prices from
this market could be used to construct nominal and real yield curves. These data provide information on the
source of interest rate dynamics that cannot be found by studying the behavior of nominal rates alone. In
particular, they allow us to separately identify the risk premia within the nominal and real term structures
and the inflation risk premium linking nominal and real yields with expected inflation.?> The behavior of
these risk premia critically determines the accuracy with which expectations regarding future yields and
inflation are reflected in the current term structure.

The model I present has its antecedents in the models of Vasicek (1977) and CIR. It is related to the
Affine class of general equilibrium models that have been recently used by Backus, Foresi, Mozummdar and
Wu (1997), Duffee (1998), Dai and Singleton (2000), Fisher and Gilles (1996), and Roberds and Whiteman
(1999) to study the US term structure. All these models relate equilibrium bond prices to a stochastic
discount factor, or pricing kernel, that in a representative agent model would be identified by the discounted
intertemporal marginal rate of substitution. They generate time-varying risk premium by assuming that
the pricing kernel process exhibits heteroskedasticity. The key feature that differentiates my model from the
Affine class is that it incorporates Markov-switching into pricing kernel process. The first use of Markov-
switching appears in Naik and Lee (1994), who extend Vasicek’s model so that the mean and variance of
the short rate switches.* Markov-switching plays a more extensive role in my model; it not only affects the

mean and variance of real and nominal short rates, but also their degree of mean reversion, correlations with

2Recent surveys of this research include; Bekaert, Hodrick and Marshall (1997a), Campbell (1995) and Evans and Lewis
(1994). A related literature considers statistical problems with the regression-based tests of the expectations hypothesis. For
example, Evans and Lewis (1994) and Bekaert, Hodrick and Marshall (1997b) examine how changes in the time-series behavior
of interest rates during the sample could affect the sample properties of standard tests. Although the evidence against the
expectations hypothesis is weakened under these circumstances, it is not entirely eliminated.

3Earlier studies of UK real rates include Brown and Schaefer (1995), Arak and Kreichner (1985), Deacon and Derry (1994)
and Barr and Campbell (1997). To account for the incomplete indexation of UK index-linked debt, these papers used a variety
of assumptions about the behavior of risk premia to construct real yields. The analysis here uses real and nominal yield curves
that are constructed from index-linked and nominal bond prices without assumptions concerning the behavior of the risk premia
or inflation risk premia; see Evans (1998a) for details.

4Markov-switching models have also been used to study the term structure in conjunction with the expectations hypothesis
by Hamilton (1988) and Sola and Driffill (1994). These model rule out time-varying risk premia and so ascribe all term structure
movements to changing expectations regarding future yields.



inflation, and the link between the risk premia and volatility.® These facets allow the model greater flexibility
to simultaneously account for the time series and cross-sectional behavior of yields. In particular, the model
produces behavior in short-term real and nominal rates consistent with the evidence of nonlinear dynamics
found by Ait-Sahalia (1996), Conley et al. (1997) and Stanton (1997) relating the degree of mean-reversion
to the level of the short rate in US data. The model also allows the risk premia to vary independently of
interest rate volatility. Duffee (1998) argues that the absence of this feature in Affine models contributes
significantly to their poor empirical performance.

The incorporation of Markov-switching has another important benefit. Over the past two decades there
have been a series of widely documented changes in UK monetary policy. For example, the UK’s departure
from the EMS in 1992 represented a significant change in policy regime. Such changes may well have resulted
in a discrete shift in the behavior of inflation and its relation to real interest rates. Remolona, Wickens and
Gong (1996) argue that the inflation risk premium fell by 30 percent after the UK left the EMS. The model
I present allows for discrete shifts in the whole structure of the joint process for inflation and real rates and
derives their implications for expectations regarding future interest rates and inflation.

To take full advantage of the UK data, the model focuses on the behavior of both nominal and real yields
and their interaction with inflation. In this respect it is most closely related to Remolona, Wickens and
Gong (1996) who use UK data to estimate a generalized version of the CIR model. My model contains a
real risk factor that identifies the short term real interest rate, and an inflation risk factor proportional to
the expected rate of inflation. The joint switching process for the two risk factors allows for the presence of
a time-varying correlation between inflation and real rates. The presence of this correlation contrasts with
the strong neutrality assumption found in earlier models of inflation and nominal rates (see, for example,
Pearson and Sun 1991, Gong and Remolona 1996), and is strongly supported by the model estimates.

I use the monthly yields on four real and four nominal bonds to estimate versions of the model with one,
two and three states in the Markov-switching process. A formal comparison of the estimates reveals that the
three state version of the model best characterizes the UK data. This model does a remarkably good job at
matching the behavior of real and nominal yields over the sample period. It also identifies distinct differences
in the behavior of the term structure across the three states. State one is characterized by upward sloping
yield curves for both nominal and real rates. In state two, the real yield curve is inverted and the nominal
curve is U-shaped. State three is also characterized by a U-shaped nominal curve but the real curve is now
sharply positively sloped.

The next step in the analysis considers the question: What does the model imply about the ability
of the real and nominal term structures to predict the future path of real and nominal yields? For this
purpose, I use the model estimates to decompose the variance of the spread between long and short-term
yields into a component due to changing yield expectations and a component due time-varying risk premia.
The relative contribution of these components can also be estimated by the slope coefficients in familiar

forecasting regressions. I estimate these regressions using real and nominal yields and compare the results

5The model in this paper was developed independently and con-currently with a model by Bansal and Zhou (1999). They
developed a Markov-switching extension of the CIR model for the U.S. nominal term structure. This study differs from their
paper in its focus on the both the real and nominal term structures in the UK and the role of inflation risk. It also differs at
technical a level. With the introduction of switching, the model falls outside the Affine class where analytically solutions for
equilibrium bond prices are readily calculated. One advantage of the specification adopted here over Bansal and Zhou’s model
is that analytic solutions for equilibrium bond prices can still be found.



against the predictions of the three state model. My principle findings are that:

e Time-varying risk premia make a significant contribution to the variance of nominal spreads. Changing
expectations regarding future 12-month rates account for 20 to 98 percent of the spread’s variance as
the maturity of the long bond rises from 24 to 240 months. Expectations regarding future long-term
yields only account for 3 to 73 percent of the variance. These estimates do not significantly differ from

those implied by the forecasting regressions estimated in the data.

e Time-varying risk premia are somewhat less important in the real term structure. The model estimates
imply that as the maturity of the long bond rises from 24 to 240 months, between 70 and 97 percent
of the variance in the spread can be accounted for by changing expectations regarding 12-month
yields, and 39 to 61 percent by expectations regarding long term yields. Although these estimates are
somewhat higher than those obtained from the forecasting regressions, the difference is most probably

due to measurement error bias in the regression estimates.

These findings indicate that predicting the future path of real or nominal yields with any accuracy is ex-
tremely difficult over horizons of less than 5 years. The link between the current term structure and expec-
tations of future yields only approaches the simple relation implied by the expectations hypothesis at very
long horizons.

The last step in my analysis asks: Can real and nominal yields provide a reliable indicator of inflation
expectations? The answer to this question depends on the size and variability of the inflation risk premium
linking nominal and real yields with expected inflation. I use the model estimates to compute the term
structure of inflation risk and variance decompositions for nominal yields and the spread between nominal
and real yields. I find that:

e The states identified by the model can be closely associated with three distinct inflation regimes: A

regime of slowly rising inflation, quickly rising inflation, and slowly falling inflation.

e The spread between nominal and real yields provides an unreliable estimate of the level of inflation
expectations because the size of the inflation risk premium differs significantly across states at all
horizons. Depending on the state, the spread overstates the rate of expected inflation by between 1
and 0.6 percent at the one month horizon. At the ten year horizon, the spread understates the rate of

expected inflation by between 1 and 3.5 percent.

e Variations in the inflation risk premium contribute little to variance of the spread over horizons ranging
from 1 to 36 months. Beyond 5 years, variations in the inflation risk premium imply that changes in

the spread understate the change in expected inflation by 11 to 32 percent.

e Variations in real rates and the inflation risk premium combine so that changes in nominal yields
understate the variations in expected inflation at very short and long horizons. At the two to three
year horizon, however, changes in real yields and the inflation risk premium offset one another so that

nominal yields move almost one-to-one with expected inflation.

These results provide straightforward guidance on how best to draw accurate inferences about changing

inflation expectations. Over horizons of one to twelve months, more accurate inferences can be derived from



the spread between nominal and real yields than from nominal yields alone. For longer horizons, inferences
based on the spread and nominal yields are quite similar. They are reasonably accurate over horizons of two
to three years. Beyond this point, changes in the term structure increasingly understate changes in inflation
expectations.

It is worth emphasizing that these results are derived from the maximum likelihood estimates of a
general equilibrium bond-pricing model. This is a distinctly different approach from the many papers that
use forecasting equations and time-series models to study the sources of term structure dynamics. For
example, Fama (1990) and Mishkin (1990) used inflation forecasting equations to examine how much changing
inflation expectations contributed to the variance of the US nominal yields, while Barr and Pesaran (1995)
and Barr and Campbell (1997) calculated variance decompositions for the UK term structure based on
Vector Autoregressions. The analysis presented here has two main advantages over these time-series based
approaches. First, the model estimates incorporate information from both the time series and cross-sectional
behavior of real and nominal yields. This enables investors’ expectations to be estimated with much greater
precision (given the presence of time-varying risk premia), than would be possible from a couple of yields,
say, in a forecasting equation. This is an important consideration when studying the accuracy with which
the term structure reflects long-horizon expectations of yields or inflation. The second advantage concerns
possible instability in the time-series behavior of yields and inflation induced by policy changes.® Simple
time series models will generally be unable to accurately estimate the expectations of investors who are
anticipating the consequences of a policy change (see, for example, Evans 1998b). By contrast, estimates
of investors’ expectations identified by the Markov-switching model incorporate the effects of anticipated
future shifts in the behavior of yields and inflation.

My analysis begins, in Section 2, with the presentation of the Markov-switching model. This section also
discusses the distinctive features of the model. Econometric identification, estimation and testing issues are
discussed in Section 3. Section 4 presents estimates of the one, two and three-state versions of the model,
tests for the number of states, and compares the model estimates with the data. My analysis of the model

estimates is presented in Section 5. Section 6 concludes.

II. The Markov-Switching Model

The model I develop extends recent Affine models of the term structure to include Markov-switching as in
Naik and Lee (1994). T take full advantage of the UK data by focusing on the behavior of both nominal
and real yields and their interaction with inflation. I begin by describing the equilibrium pricing equations
that lie at the heart of the model. Next, I present the dynamics of the model and solve for equilibrium bond
prices. I then discuss the distinctive features of the model in terms of the behavior of spot rates and the risk

premia.

6For evidence of instability in US data, see Evans and Lewis (1994, 1995) and Travalis and Wickens (1996); in UK data, see
Remolona, Wickens and Gong (1996).



A. Bond Pricing

Let M;y; be a random variable that prices one-period state-contingent claims. If the economy admits no

pure arbitrage opportunities, it can be shown that the one-period real return on all traded assets must satisfy
Ey[M1 R =1, (1)

where R{, is the gross real return on asset ¢ between ¢ and ¢+ 1. E; [.] denotes the expectation conditioned
on investors’ period ¢ information set, Z;. (Time periods are assumed to be discrete.) I shall refer to M; as the
real pricing kernel. In economies where there is a complete set of markets for state-contingent claims, there is
a unique random variable M; > 0 satisfying (1). Under other circumstances, this no-arbitrage condition still
holds but for a range of M;s (Duffie 1992). In economies with a representative agent, M; 1 is the discounted
intertemporal marginal rate of substitution so that (1) also represents a first-order condition.

We can use (1) to find equations that price both real and nominal bonds. Let %+ denote the nominal
price of a zero coupon bond at period ¢ paying £1 at period t+ k. The one period real return on this k-period
bond is (QF_; ;. 1/Q% ) (Pe/Piy1) where P; is the (known) price level at . Substituting this expression for
Ri,, in (1) and rearranging gives (for k& > 0),

M1 Py
Qz,t:Et T—l—l 271,t+1 . (2)

We can derive a similar equation for real bonds. Let ta denote the nominal price of a zero coupon
bond at time ¢ paying £(Pi4x/P%) at period ¢ + k. Q} , also defines the real price of a claim to one unit of
consumption at ¢t + k. Now consider the real return from holding this k-period claim for one period. In ¢t +1
the nominal price of a claim to £(Pi/Prt1) is Qf_y 441 so the price of a claim to £(P;4/F;) must be
Q%—1.4+1(Pi+1/F). The real return on holding the k-period claim is therefore Qf_; ,,,/Q} ;. Substituting
this for Ri,, in (1) gives (for k > 0),

Qz,t = E; [Mt—i-l Q};—l,t-&-l} . (3)

Equations (2) and (3) determine the complete set of real and nominal bond prices in the economy in
terms of the dynamics of the pricing kernel, M;, and aggregate price level, ;. Notice that Qp; and Qg ,
must equal unity. Hence, once the dynamics of the pricing kernel and the aggregate price level have been
specified, we can use (2) and (3) to solve recursively for a complete set of nominal and real bond prices.

The analysis below examines the behavior of yields and risk premia. Let qi’t denote the log price of a k-
period bond, In Qf“ Continuously compounded k-period real and nominal yields are defined by Yt = —%qz,t
and yi, = —%q};’t respectively. In the case of one-period yields, I drop the k subscript and refer to yg as
the nominal (j = n) or real (j = r) spot rate. I focus on two sets of risk premia: the term premia, and the
inflation risk premia. The former are defined as the expected excess log return on a k-period bond relative

to the one-period yield, yg , Or spot rate:

Jj  — J J J
ek,t =L [qk’—l,t-i-l R



for j = {n,r}. Below I refer to 0k, and 0 , as the nominal and real term premia. The inflation risk premia

is defined as
Ve =y — EApiia] — v

where Ap;1 = In(Pi41/P;) is the rate of inflation. This is the expected excess log real return on nominal

bonds relative to the real rate over a one period horizon.

B. The Model

My model for the term structure uses (2) and (3) together with a specification for the dynamics of the pricing

kernel and inflation. Specifically I assume that the log pricing kernel, m; = In M, follows

—mip1 = Km(8t) + Zmat + A (80w (86) U 41, (4)

Zmpt1 = M (St41) + @ (8e) (Zmt — tm(5¢)) + Wi (S¢)Umit1, (5)

where Uy, ¢+1 is an i.i.d. N(0, 1) shock. The terms i, (.), A (-)s o (+), @m(.) and wy,(.) > 0 are functions of a
discrete-valued variable s; that follows an independent Markov process with constant transition probabilities.

The process for inflation is also characterized by a switching structure:

Apeyr = Kp(se) + zpt + Ap(Se) (p(st)wm (86)um,t41 + wp(se)up,et1) (6)
Zpt+1 = :U'p(st-‘rl) + ap(st)(zp,t - :up(st)) + apm(st)(zm,t - ,um(st)) (7)

Fp(8)Wm (5t)Um,t+1 + wWp(8t)Up 11,

where u, 41 is a i.4.d. N(0,1) shock. As above, k,(.), Ap(.), p(.), 0p(.), ip(.), ap(.) and wy(.) > 0 are all
functions of s;. Investors’ information, Z;, includes the parameters, the current values of the risk factors,
Zm,t, and zp ¢, and the state variable, 8.7

Equations (4)-(7) describe a recursive dynamic system. From (3) we see that real bond prices depend
only on my so the behavior of the real term structure is determined by (4) and (5). I will refer to z,,, as
the real risk factor. Nominal bond prices depend on both the real pricing kernel and inflation so both risk
factors affect the behavior of the nominal term structure. I will refer to z,; is the inflation risk factor.

This model is a multivariate version of the Vasicek (1977) model extended to incorporate Markov
switching.® As is well-known, the Vasicek model implies that all the risk premia are constant. In this
model, both the term premia and the inflation risk premia vary with the state variable s;. This feature dif-
ferentiates the model from a large class of term structure models following CIR and provides a very flexible
framework for modeling the dynamics of the term structures.

The relationship between the pricing kernel and inflation plays an important role in the analysis. If
investors (correctly) perceive that the real pricing kernel and inflation evolve independently, the price of a

7This assumption rules out the possibility that investors have to learn about the current process for the risk factors. Allowing
for learning in the model (i.e., by excluding s from Z;) would greatly add to its complexity and make estimation intractable.
For a discussion of the modelling problems induced by the introduction of learning, see Evans (1998b).

8The development of term structure models in discrete time is now standard; see, for example, Campbell, Lo, and MacKinlay
(1996, Chapter 11) and Sun (1992). The Vasicek model has served as the basis for other models linking yields and inflation
including; Pennacchi (1991), Foresi, Penati and Pennacchi (1996) and Campbell and Viceria (2001).



nominal bond is equal to the price of a real bond multiplied by the expectation of the future real value of
money (Campbell, Lo and MacKinlay, 1997). Although the model admits this possibility when apm,(s) =
p(s) = 0, this restriction imposes a strong neutrality assumption on the data (in the absence of state
variations). In particular, the restriction implies that; (i) real yields are uncorrelated with inflation, and (ii)
there is no inflation risk premium. The first implication is easily demonstrated if we assume a single state.
Equations (5) and (7) then imply that

2
Cov(zm,t, 2pt) = <?pinz§: +p> i —WOZam)’

(where the state-dependence of the parameters has been omitted for clarity). This covariance is proportional
to the covariance between (expected) inflation and real yields. So when ., = p = 0, real yields cannot
be correlated with inflation. The second implication follows from the fact that p(s) governs the covariance
between innovation in the pricing kernel and inflation (see equations (4) and (6) above). As I discuss below,
p(s) affects the inflation hedging properties of nominal bonds, which in turn, determine the inflation risk
premium. In particular, when p(s) = 0, nominal bonds have no hedging value and the inflation risk premium
equals zero. Both implications of the neutrality assumption appear at odds with the UK data. The results
in Evans (1998a) support the presence of a time-varying inflation risk premium and a negative correlation
between inflation and real yields.

To solve for equilibrium bond prices, let @}, = [—my, Apy], 2, = [2mt, 2p.t], and w) = [ty ¢, up ] so that

(4) - (7) can be written in vector form as

T = r(se) 4+ 20 + As) QY2 (s ups, (8)
zeer = p(Se41) +alse) (2 — p(se)) + QY2 (sp)uesr,

where #(s)" = [km(s), kp(s)] s ()" = [1m(5), pp(5)],

als) = am(s) 0 Als) = Am(s) 0 and OV/2(s _l Wi () 0 ]
) laws) aps>]’ ®) l 0 Ap@]’ PO = 1 omls) wpls) |

The equilibrium conditions in (2) and (3) can now be written as

iﬂf =B [exp (_djxt-‘rl) Qi—l,t-&-l} J= {Tv n}a (9)

with d" = [1,0] and d™ = [1,1]. As in the Vasicek model, equilibrium bond prices in this model depend only
on d’ (k(s) + u(s)) so the elements in #(s) and u(s) cannot be identified separately from term structure data
alone. To resolve this indeterminacy, I choose the elements of (s) so that d/r(s) = $d7A(s)Q(s)A(s)'d”’ for
j ={n,j}. This choice implies that yg = d7 % so the real risk factor identifies the real spot rate, and the sum
of the real and inflation risk factors equals the nominal spot rate.

Solving (9) recursively with the aid of (8) gives the following expression for equilibrium log bonds prices:

_qil,’t = Ai(st) + Bi’(st)zh ] = {n,r}, k= 07 1, e (10)



where A7(.) is a scalar and BJ(.) is a 1 x 2 vector of functions that depend on the state variable s, and the
maturity of the bond, k. Because s is a discrete-valued variable, the Ai() and Bi() functions are completely
described by the state-dependent parameters Ai(s) and Bi (s) for s € S, where S is the set of possible states.

These parameters follow the recursions

A(s) = B [A,(3)+BL,G) (06) - als)u(s)| + 0] (5),
(11)
Bi(s) = E.[Bl(®als)] +,

where Eg{f(3)} = > s, o f(8) Pr(se1 = 3|sy = s) , with Al(s) = 0 and B! = [1,1]. The appendix provides
a detailed derivation of these recursions and contains a description of the state-dependent function Oi ()
that determines the term premium on a k-period bond: Qi’t = Qi(st). In particular, the appendix shows
that the Gi (.) function depends on the values of Bi_l(s), A(s), Q(s) and k(s) for s = 1,2, ... so that (11)

defines a set of nonlinear recursions for the Ai(s) and B,i(s) parameters.’

C. Features

This model differs from CIR-type models in its implications for the behavior of spot rates and the risk
premia. Consider first the behavior of the real spot rate. Combining the equilibrium condition y; = 2, 4
with (5) gives

Yipr = B (Se41) + am(se) (Y — ptm(se)) + Vg1, (12)

2

where v ~ N(0,w;,

(s¢)). (12) shows the real spot rate following a switching AR(1) process with het-
eroskedastic innovations. This process introduces two features that are absent in CIR-type models. First it
breaks the link between the level and volatility of the spot rate. Volatility may increase or decrease with the
level of the spot rate depending on the form of the wy,(.), um(.) and ay,(.) functions. This also means that
the level and conditional variance of yields need not display the same degree of persistence. Persistence in
the level depends on the form of the a,(.) function and the persistence in s;, whereas persistence in volatility
only depends on the latter. In CIR-type models, by contrast, volatility is a linear function of the spot rate
so volatility must display the same degree of persistence as the level.

Switching also introduces nonlinearity into the spot rate process. In particular, the drift function
E [y{ lyr ] can now be nonlinear in y;. Intuitively, a rise in y; increases the forecast of y;,, given sy
and s; by a(s;), and changes the probability distribution of s;y1 and s;. The combined effect determines
how E [y{ L lup ] changes and may differ according to the level of 4. This means, for example, that real yields
could display greater mean reversion the further y; is from its unconditional mean. Ang and Bekaert (1998)
study this effect using a switching specification like (12) to model nominal interest rates. Their estimates
of the implied drift functions closely correspond to the estimates obtained by Ait-Sahalia (1996), Conley et
al. (1997) and Stanton (1997) using non-parametric methods. The presence of switching allows the model

to capture nonlinearity in the dynamics of spot rates and permits us to study their implications for the

9The appendix also contains derivations for many of the results presented below along with details of the methods used to
identify, estimate and test the model.



behavior of the term structure.
The model also differs from CIR-type models in the way it links the term premia to the behavior of spot
rates. To illustrate this point, consider the following approximation to the term premium on a two-period

real bond:

. 1 . .
95,:& + §V‘1Tt(q;+1) ~ —Covi(mit1,G41),
= —/\,,L(st)wfn (s¢), (13)

where Vary(.) and Cov(.) denote the variance and covariance conditioned on time ¢ information, Z;.1° The
variance term on the left is a Jensen Inequality adjustment that appears because the term premium was
defined in terms of log returns. The right hand side of (13) identifies the hedging value of real bonds. Recall
that my41 is the log of the real intertemporal marginal rate of substitution in representative agent models.
So when the covariance on the right is positive, long-term real bonds provide a hedge against states where

marginal utility is high, and the premium is smaller to compensate. According to the model, this covariance

2
m

premium also varies through the “price of real risk term”, A, (s;).!* This second source of variation is absent

is proportional to the within-state variance of the spot rate, w (s;), and so varies over time. The term

in CIR-type models and adds greater flexibility to the dynamics of the real term premium. In particular,

2

2 (s¢) must be non-negative, the sign of the term premium is determined by the price of real risk

because w
term, A, (s¢), and can therefore change signs over the sample.

The term premium on a two-period nominal bond may be approximated by

1
¢ + iva"’"t<qzl+l) ~  —Covi(mit1 — APi41,Gi41),
= = (Am(se) + Ap(se)p(se)) (14 p(se))wi, (st) — Ap(se)wp(se). (14)

In this case, the term premium depends on the within-state variance terms, w?,(.) and wﬁ(.) and so could
change signs even if A, (.) and A,(.) remained constant. The switching model used here allows for greater
flexibility in the dynamics of the term premia via variations in p() and the risk price terms. In this respect,
the model resembles the Semi-Affine class of models developed by Duffee (1998) that introduces a more
general specification for the time-varying price of risk into a CIR-type structure.

A final feature of the model worth noting concerns the state-dependence between the real pricing kernel
and inflation. This is governed by the functions ay,,(.) and p(.). Variations in the current real rate affect
expectations of future inflation according to the value of app,(s). Although the micro foundations of the
inflation process are not specified in the model, it is not unreasonable to think that variations in apm(s),
ap(s) and g, (s) could reflect the effects of changing monetary policy regimes.

The value of p(s;) affects the covariance between inflation and the pricing kernel. This is the key

10(13) and(14) are derived by taking a lognormal approximation to (9) for the k = 2 case, (i.e., by assuming that m:4+1 and
q{ 11 have a joint normal distribution conditioned on ;). The approximation error arises because q{ 11 = —d? 2441 and the
conditional distribution of z¢41 is non-normal unless there is a single state. The model estimates and the empirical analysis
below are based on the exact term premia, 9%(3,5), derived in the Appendix. I present the approximations here because the
ch() function is too complex to develop much intuition about the role of Markov-switching.

' The price of real (nominal) risk is defined as the ratio of the expected excess log return on a real (nominal) bond, plus one
half its own variance to adjust for Jensen’s Inequality, to the standard deviation of the excess log return on the bond.



determinant of the inflation risk premium, ;. Combining (8) and (9) with the solution for real and nominal

spot rates gives

1
e+ 5Var: (Apesr) = Cov(Appr, M) = A (86)Ap(50)p(51)win (51)- (15)

As above, the variance term on the left is a Jensen’s inequality adjustment. The covariance term on the right
identifies the real hedging value of nominal bonds. In a representative agent model, a positive covariance
implies that the realized real return on nominal bonds will be unexpectedly low in states where marginal
utility is high. This makes nominal bonds less attractive to investors so the equilibrium inflation risk premium
has to rise to compensate. In this model the (adjusted) inflation risk premia has four sources of variation:
the within-state variance of the real spot rate, w2 (s;), the risk price terms A, (s;) and A,(s;), and p(s;).
Clearly, the inflation risk premium can vary independently of both the nominal and real term premia and
the variance of spot rates.

To summarize, the switching model introduces a great deal of flexibility into modeling the term structure.
It accommodates nonlinearities in the dynamics of spot rates and adds flexibility to the relationship between
the risk premia and volatility. The cost of this added flexibility comes in two forms. First, there are no
parameter restrictions to insure that nominal yields are bounded above zero even in the continuous time
limit. In principle this problem could be overcome by making the s; process dependent on the level of
nominal yields through the transition probabilities. By this means, the volatility of nominal yields could
approach zero with the level of yields in the manner of CIR-type models. Unfortunately, a modification of
this type would make the model much less tractable. I regard the possibility of negative nominal yields to be
a small price to pay for tractability and flexibility of the model.'> The second cost concerns the behavior of
the state variable. The derivation of the parameter recursions in (11) characterizing equilibrium bond prices
critically relies on the assumption that s; follows a discrete-valued process. Although s; can take on any
finite number of states in principle, in practice estimating models with many states is impossible because
they contain a very large number of parameters. I consider models with one, two and three states below and

show that the three-state model closely replicates the statistical features of the UK data.

III. The Empirical Model

A. Estimation

The model is estimated by maximum likelihood using the yields on real and nominal bonds of 1, 3, 5 and 7
year maturities. As in other studies (e.g., Duffee 1998, and Campbell and Viceira 2001), I introduce a pricing
error into the equation for equilibrium yields when estimating the model. Specifically, I assume that the
observed yields, f/f > are related to the theoretically determined yields, yx ; = —%qé o by gjf;,t = yit + fi,t
where fi’t ~ i.4.d.N(0,%7) for j = {r,n}.'® The vector of observed yields, ; = [g]i’t], is then related to the

12Backus, Foresi, Mozumdar and Wu (1997) and Dai and Singleton (2000) make the same argument in context of their
models. My estimates of the three state model imply a 2.8 percent probability that 12-month nominal yields are negative. The
probability falls quickly with maturity, reaching 0.2 percent at 84 months.

13Recall that gt, 1, almost surely contains a sampling error because it is derived from an estimated yield curve.
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risk factors and the state variable by
g = A(se) + B(s)z + &, (16)

where the i’th rows of A(s;) and B(s;) are given by Ai(st)/k and B,i(st)/k and satisfy the recursions in
(11). The other equations in the model comprise (8), governing the dynamics of z;, and the Markov process
for s;.

When there is one state, (i.e., s; = 1), (8) and (16) constitute a state space form in which the vector of
yields is related to the unobserved risk factors. In this case maximum likelihood estimates of the parameters
can be obtained using the Kalman Filter, as in Pennacchi (1991). When there is more than one state, the
vector of observed yields is now a function of both z; and s;, which are unobserved and follow non-gaussian
processes. Kim (1993) provides a method for approximating the likelihood under these circumstances based
on an extension of the Kalman Filter and Hamilton’s (1988) algorithm for Markov processes. When I initially
used this technique to estimate the two and three-state versions of the model, I found that the estimated
variances of the pricing errors for 3 year real and nominal yields were very small. To obtain greater precision,
I then re-estimated the models without these pricing errors. In this case, z; can be inferred directly from
4 for each state, so s; becomes the only unobservable variable in the model. With this simplification, the
exact likelihood can be calculated with the Hamilton algorithm. The second set of estimates obtained in

this manner are almost identical to the first and are reported in the tables below.

B. Identification

A notable feature of the model is that it utilizes data on real and nominal yields but not inflation. This
specification choice has one advantage and one disadvantage. The advantage is that we do not have to deal
with complications caused by the reporting lag in the Retail Price Index. The lag means that the RPI for
month ¢, P, is reported two weeks into month ¢+ 1. As a result, we cannot simply add the equation for Ap; to
(16) because this would have the counter-factual implication that P; is an element of investor’s information,
T:. By excluding the inflation data, we avoid having to model the degree to which investors anticipate the
value of P, when pricing bonds at the end of the month.

The disadvantage of omitting inflation is that we cannot identify the rate of expected inflation or the
inflation risk premium from the parameter estimates without a further restriction. To see why, suppose we
amend (8) to

Tip1 = qb + K(St) + Z¢ + A(St)91/2(8t)ut+1 =+ 21/2€t+1,
Zr = @(sie1) + alse) (2 — @(s1)) + 02 (s0)urg,

where €411 is a vector of 7.i.d.N(0, 1) shocks, ¢’ = [¢m, ¢p] is a vector of constants and ¢(s) = u(s) — ¢.
If we choose ¢, and ¢, such that d/¢ = Fd/Sd” for j = {n,r}, it is easy to show that equilibrium bond
prices satisfy (10) with z; replacing z; and ¢(s) replacing p(s) in the parameter recursions (11). Adding
homoskedastic shocks to the pricing kernel and inflation processes in this manner has no effect on the
dynamics of real or nominal yields. All it does is shift the long run levels of the risk factors from pu(s) to

(). This means that we cannot identify the parameters in 3 (or equivalently ¢) from the behavior of yields
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alone. And, since the expected rate of inflation is given by EtApi41 = (d™ — d")(k(s¢) + ¢ + Z;), we cannot
therefore identify the rate of expected inflation, or the inflation risk premia, ¥, = y;* — yi — EtApy1.

To resolve this identification problem, I set the parameters in ¥ so that the sample average of three year
nominal and real yields equals the long run average implied by the model parameters. This is a minimal
rational expectations assumption. Importantly, as the appendix shows, it has no impact on the differences
in the behavior of term structure across regimes, the dynamics of yields, or the dynamics of the term and

inflation risk premia. The model estimates reported below are based on this normalization.

C. Testing For Markov-Switching

In the next section I present estimates of one, two and three-state versions of the model. To assess their
relative performance, we will need to test for Markov-switching. Standard hypothesis tests (i.e., Likelihood
Ratio, Wald, and Lagrange Multiplier) cannot be used to test for the presence of switching between multiple
states in the model specified by (8) and (16). The reason is that unidentified nuisance parameters present
under the null hypothesis of fewer states invalidate the use of standard asymptotic theory (see, Hamilton
1988, and Hansen 1992). To overcome this problem, I follow Garcia and Perron (1996) by utilizing the
test proposed by Gallant (1977) to compare models with different number of states. Under this procedure
(described in the appendix), a large set of predicted values for the yields are calculated from estimates of
the model with more states using randomly drawn values for the unidentified parameters. Several principle
components are then extracted from this set of yields, added to the model with fewer states and their
significance judged according to an F-test.'*

As in Garcia and Perron (1996), I also compare different versions of the model with the Davidson and
MacKinnon J-test. To illustrate, let §;' and ;2 denote the predicted values for the observed yields from
estimates of a one and two-state version of the model respectively. The J-test is computed by first estimating

the matrix regression
o= = B)g" + By + we,

where 3 =diag(3;), and then testing for the joint significance of 3, (the individual regression coefficients).
The idea behind this test is that under the null of one state, predictions from the two-state version should

not account for any of the discrepancy between observed yields and the predictions of the one-state model.

IV. Empirical Results

A. Data

The analysis in this paper uses data on nominal and real yield curves derived from the secondary market
prices of nominal and index-linked bonds that trade in the UK on the last business day of the month from
January 1983 until November 1995. The nominal yields come from The Bank of England and are constructed
using the method described in Deacon and Derry (1994) while the real yields come from Evans (1998a). The

procedure for calculating real yields is summarized in the appendix. As there were relatively few nominal

4 Hansen (1992) has also developed a test for switching but, as the appendix explains, it is too computationally intensive to
apply here.
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Table 1: Summary Statistics

k months Autocorrelations
Nominal yields: y;*,  mean st.d. skewness kurtosis lag1l lag2 lag3
12 9.468 2.292 -0.265 2479 0.958 0.912 0.874
24 9.464 1.923 -0.476 2.657 0.951 0.893 0.845
36 9.548  1.742 -0.541 2.712 0945 0.877 0.821
60 9.626 1.636 -0.525 2.687 0.941 0.869 0.809
84 9.680 1.559 -0.481 2.637 0.939 0.867 0.805
120 9.665 1.252 -0.314 2.645 0.929 0.864 0.799

Real yields: y; ;. mean st.d. skewness kurtosis lagl lag2 lag3

12 5.031 2.992 1.242 4.859 0.491 0443 0.441
24 4.426 1.465 0.926 4.441 0.547 0.480 0.455
36 4.246  0.996 0.583 3.975 0.610 0.519 0.472
60 4.122  0.660 0.068 3.436  0.718 0.589 0.510
84 4.067 0.538 -0.175 3.287 0.791 0.646 0.552
120 4.009 0.465 -0.287 3.191 0.856 0.713 0.615

Notes: Sample statistics for nominal and real yields derived from the secondary market
prices of nominal and index-linked bonds that trade in the UK on the last business day
of the month from January 1983 until November 1995.The yields are calculated as yg,t =
—% In @}, and y, E-% In @} ;- The asymptotic standard errors for the skewness
and kurtosis statistics are 0.197 and 0.395.

or index-linked bonds with short maturities trading during the sample period, it is not possible to precisely
estimate the short end of the real and nominal yield curves. Estimated yields for one and two month bonds
would surely contain significant sampling errors. To minimize the possible influence of these errors, I will
focus on the behavior of yields for bonds with maturities of at least 12 months.'®

Table 1 reports summary statistics on the log yields for nominal and real bonds on the last business
day of the month from January 1983 until November 1995. The upper panel of the table shows that the
nominal yield curve was on average mildly upward sloping while the real yield curve was downward sloping.
Short-term yields are much more volatile than long-term yields in both term structures but volatility falls
more quickly along the real term structure. From the skewness and kurtosis statistics, the unconditional
distributions for both sets of yields appear non-normal. Variations in nominal yields of all maturities are
very persistent as measured by the high values of the sample autocorrelations. In the case of real yields,

persistence increases with maturity but remains below the level displayed by nominal yields.

15The poor coverage of the UK market at the short-end of the maturity spectrum is widely recognized. Barr and Campbell
(1995), for example, supplement the data on government bond prices with the one and three-month interbank rates to obtain
their term structure estimates. They note, however, that these rates probably include a risk premium relative to the equivalent-
maturity government bond, and so are not ideal.

13



B. Model Estimates

Table 2 reports the maximum likelihood estimates for one, two and three-state versions of the model. The
upper rows show the state-dependent parameters of the process for the real and inflation risk factors expressed
in annual percentage points. The parameters ¢,,(s) and ¢, (s) respectively determine the long-run level of
the real and inflation risk factors in each state. The estimates imply sizable cross-state differences in these
long-run levels for both risk factors in the multiple state models. For example, in the three-state model, the
largest cross-state difference between the long run levels of the real and inflation risk factors are approximately
8 and 10 percent. The parameters in the «(s) matrix determine the degree of within-state mean-reversion in
the risk factors. There are much smaller differences in these estimates across states. The estimates of o, (s)
and a,(s) are close to unity and the estimates of ay,(s) are positive and significant. Thus, the estimated
within-state rate of mean-reversion is very low for both risk factors.

The next three rows of the table report estimates of covariance matrix for the risk factor innovations.
In the multi-state models, the estimates of wy,(s), wp(s) and p(s) differ from state to state and imply the
presence of state-dependent heteroskedasticity in the innovations to the risk factors. The largest cross-state
differences appear in the estimates of wy,(s) and p(s). The former parameter identifies the standard deviation
of innovations to the real risk factor that varies from approximately 1.6 to 2.3 percent in the three state
model. Since y] = zmt, wm(s) is also the standard deviation of innovations to the real spot rate. The
estimates of p(s) range from approximately -0.88 to -1.44 and are all statistically significant. Recall that real
yields will only vary independently of inflation risk if c,(s) = 0 and p(s) = 0. This neutrality restriction
can be rejected with a high significance level based on the estimates of a,m,(s) and p(s) in all three models.
The negative values for p(s) also imply that nominal spot rates are much less volatile than real rates within a
state. Within-state innovations in nominal rates are equal to the sum of the innovations to both risk factors
and so their standard deviation is given by ((1+ p(s))?w2,(s) + wg(s))l/

65, 91 and 67 basis points in states one, two and three respectively.

®  This is estimated to be equal to

The term and inflation risk premia are governed by the covariance parameters and the price of risk
parameters, A\, (s) and A, (s). In the one state model, both prices are insignificantly different from zero. In
the multi-state models the estimates are statistically significant and vary considerably across regimes. Recall
that variations in the risk prices add flexibility to the relationship between the term premium and volatility.
In the case of the real term premium, the estimates of the three-state model imply a positive premium of 24
and 37 basis points in states ones and three and a negative premium of 16 basis points in state two. Since
real spot rates exhibit least volatility in state two, this implies that the term premium can change sign and
be positively correlated with volatility - a combination of features that single factor CIR-type models cannot
replicate. In the case of the three state model, the estimates imply a negative nominal term premium of 72
and 7 basis points in states two and three, and a positive premium of 3 basis bonds in state one. Again,
there is no simple relationship between the premium and the volatility of spot rates. Cross-state differences
in the estimates of A, (s), Ap(s) p(s) and wy,(s) all contribute to the inflation risk premium identified in
equation (5) above. The estimates from the three-state model imply that the risk premium is equal to 1.09,

1.15 and 1.24 percent in states one, two and three respectively.'6

16 Another way to interpret the parameter estimates is in terms of the price of risk. Estimates from the three-state model
imply that the price of real (nominal) risk is 0.109 (0.047),-0.102 (-0.792), and 0.156 (-0.104) in states one, two and three.
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The table reports estimates of the Markov transition probability matrix, II, in the rows following the
price of risk parameters. The diagonal elements of IT identify the probability of s; remaining in the same
state from one month until the next. In both multi-state models, estimates of these probabilities are close
to one in every state. This means that variations in the state contribute more to the variance of the pricing
kernel and inflation over longer horizons. Consequently, the possibility of a change in state impacts more on
the behavior of long-term rather than short-term yields.'”

The last four rows show how the behavior of real and nominal spot rates differs across states. In state s,
the vector of risk factors converge to ¢(s) so the within-state long-run level for the spot rate is E[y!] = d’(s).
These averages differ significantly across states (and models). Concentrating on the case of the three-state
model, the average real spot rate rises from 2.3 percent in state one to 7.6 percent in state two, and then
falls to -0.5 percent in state three. Nominal rates, by contrast, are approximately equal to 8.6 percent in
states one and two, and rise to 10.4 percent in state three. We can also characterize these differences in
terms of the average level of the inflation risk factor, ¢,(s) = E[y'] — E[y;]. From this perspective, states
one and three are characterized by much higher average levels of the inflation risk factor than state two. The
standard deviation of innovations to spot rates within each state are reported in the last two rows. There is
no simple relationship between the within-state averages and these volatility measures. In the case of real
rates, the state with the lowest average has the highest volatility and vice-versa. Nominal rates, by contrast,
display most volatility in state two where the average level is similar to state one.

Although many of the parameter estimates reported in Table 2 are broadly similar across the three
model versions, there are some striking differences. In particular some of the parameter estimates in ¢(s),
Q(s) and A(s) differ significantly from model to model. Since these parameters play an important role in
determining the behavior of yields and the risk premia, it is important to exam which version of the model
best characterizes the data. To this end, the upper panel of Table 3 presents the results of the Markov-
switching tests. The left hand column reports tests of the one-state null hypothesis against the alternative
of two states. Based on Gallant’s test, this null is strongly rejected. The right hand column reports tests of
the two-state null against the alternative of three states. This null hypothesis is also strongly rejected by
Gallant’s test. In both cases, the marginal significance level of the test statistic is less that 1 percent. The
next rows of the table report J-test statistics for six yields individually and jointly for one verse two states
in the left hand column, and two versus three states in the right hand column. These tests consider whether
the difference between the actual yield on, say, a one year real bond and the prediction of the model with
fewer states can be improved upon with the predictions from the model with more states. The results in
the left hand column show that the two-state model improves on the ability of the one-state model with
respect to all the yields; the marginal significance level of the test statistics are less than 1 percent in every
case. In the right hand column, the test statistics are significant for all but the cases of long-term nominal
yields. Taken together, these results indicate that the three-state version of the model best characterizes the
data. In particular, the three-state model appears to capture aspects of the real term structure that were
not adequately represented by the two-state model.

The lower panel of Table 3 reports tests for cross-state differences in the parameters. These tests do not

17To conserve space, Table 2 omits the estimates of the pricing error variances. With the exception of the 12-month real
yield, the estimated variances are very small. A table comparing the fitted values from each model against the data is provided
in the appendix.
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Table 3: Tests

Tests for the number of States

Gallant
J-tests
Y2

Yéo

Yga

Yta

Y60

Yss
Joint

One vs. Two States

Two vs. Three States

61.534**

6.060"*
7.267*
8.580**
15.728**
15.407**
12.351**
14.511**

65.550**

3.484**
5.342**
1.392 *
1.688 *
0.856
1.481
15.774**

Coefficient Tests

Two State Model

Three State Model

1,2 1,2 1,3 2,3

74,627 561.174  176.772"  727.838"
497.943** 1022.666**  260.791**  1051.475**
165.349** 25.728**  0.001 10.270**

0.001 0.001 0.001 0.001
102.421%* 98.232**  0.507 50.533**
2340.863** 271187 17.928**  170.093**

653.186** 34.519"  8.078** 9.762
1743.243" 1531.375%*  45.378"*  1823.851**
16.722%* 80.401**  81.345**  101.071**
63.089** 228.562°*  3.087 18.168**

at the 5 percent and 1 percent levels.

Notes: The upper panel reports Gallant and J—test statistics for the
null hypothesis of one state against two states in the left hand column,
and two states against three states in the right hand column. Details of
the Gallant test are provided in the appendix. The lower panels report
Wald test statistics for the null hypothesis that s(s;) = 2(s;) for the
state-dependent parameter %() with s; and s; equal to the states listed
at the head of each column. “*” and “**” respectively denote significance

speak to question of how many states should be in the model. Rather they provide statistical evidence on
how switching between states affects the dynamics of yields and the various risk premia. The table reports
Wald tests for the null hypothesis that s(s;) = »(s;) for the state-dependent parameter s(.) with s; and s;
equal to the states listed at the head of each column.!® In both the three and two-state models, the only
parameter not to display any significant cross-state difference is a,,(s), the coefficient on the lagged inflation
risk factor in the inflation risk factor process. This coefficient is uniformly estimated at 0.99 across all states

and versions of the model. All the other parameters differ significantly across at least two states.

18Because all the parameters of the model are identified under the null if multiple states are present, the restrictions on s(s)

can be examined with a conventional Wald test, as in Engel and Hamilton (1990).
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C. The Three-State Model

In light of the results reported in Table 3, I focus below on the estimates of the three-state model. Figure
1 plots estimates of the state variable, s;. As the plot shows, there are numerous changes in the estimated
value of the state variable throughout the sample. The estimated matrix of transition probabilities implies
that the unconditional probability of being in state one, two and three is 0.604, 0.098 and 0.298. Over the
sample, the corresponding empirical frequencies are 0.559, 0.21 and 0.231. Thus, the model estimates imply
that over the sample state one occurred a little less and state two a little more frequently than was consistent
with the expectations embedded in the term structure.

Differences in the behavior of the term structure across states are displayed in Figure 2. The plots show
the average yield curve in each state calculated as yi = (A% (s) + BL(s)g(s))/k for j = {r,n}. In the case
of real yields (shown on the left), the slope of yield curve is positive in state one, negative (inverted) in
state two, and positive in state three with greater curvature than in state one. All three curves converge to
a yield of approximately 5.3 percent at long maturities. The average nominal curves (shown on the right)
are somewhat different. The state one curve is concave and positively sloped, while the state two and three
curves are “U-shaped”. The state two curve falls to a minimum of approximately 7.9 percent at 12 months
before rising steadily above the state three curve and towards the state one curve. In state three, yields are
initially higher and fall gradually towards a minimum of approximately 9.6 percent at 36 months. There is
much less convergence in the three curves than is exhibited by the real curves at long maturities. Overall,
these plots show quite different cross-sectional relationship between yields across states.

The model estimates also imply different dynamic behavior of the real and inflation risk factors across
states. To illustrate this Figure 3 plots the autocorrelation function for the real and inflation risk factors
within each state.!® The autocorrelations in the upper two plots show that both risk factors are more
slowly mean reverting in state two than in states one and three. Recall from Table 2 that state two is also
characterized by the highest average for the real risk factor, and the lowest average for the inflation risk
factor. This means that in state two realizations of the real spot rate (i.e., yj = zm,:) are higher on average
and display less mean-reversion than in other states. The autocorrelation function for the sum of the real
and inflation risk factors is shown in the lower plot. All three autocorrelation functions fall more slowly than
the real risk functions with the state two function again being slowest. These plots imply that realizations
of the nominal spot rate (i.e., y;* = zm+ + 2p,+) Will display the slowest rate of mean reversion in state two.

A visual comparison of the yields and the predicted values from the three-state model is provided in Figure
4. The overall impression from these plots is that the model quite accurately characterizes the behavior of
both the real and nominal term structures. The largest differences appear in the plot for 12-month real
yields. Actual yields are more volatile than the model predictions; the sample standard deviation of actual
yields is 3.0 percent compared to 1.86 percent for the model predictions. The model does a better job of
replicating the volatility of the other yields. Differences between the standard deviations for actual and
predicted yields are all less than 0.03 percent. The plots also reveal periods where the model over or under-
predicts actual yields for several months. For example, the model over-predicts 12-month nominal yields for

much of 1994 to 1996. Over the whole sample, however, the averages of actual and predicted yields are very

19These autocorrelations are computed as £&y (s)¢' /[f®o(s)¢'] where the vector £ picks out the risk factor(s) from 2z, ®(s) =
a(s)k®g(s) and Pg(s) = a(s)Po(s)a(s)’ + Q(s) for s = {1,2,3}.
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similar (see appendix table for details).

V. Analysis

In this section, I use the estimates of the three-state model to address two questions: What does the model
imply about the ability of the real and nominal term structures to predict the future path of real and
nominal yields? Can movements in real and nominal yields provide a reliable indicator of changing inflation
expectations? The answer to the first question depends on the behavior of the real and nominal term premia.
Since these risk premia are time-varying in the model, changes in the current term structure will be a less
than completely reliable guide to changing expectations regarding yields. The issue is the degree to which
changes in the current term structure reflect changing yield expectations. The answer to the second question
depends on the behavior of both the term and inflation risk premium. If all these risk premia were constant,
then changes in inflationary expectations would be reflected one-to-one in the spread between nominal and
real yields. Below I examine how variations in the risk premia implied by the model estimates affect term

structure based inferences about inflation expectations at different horizons.

A. How Variable are the Term Premia?

We can use some well-known regressions to see how variations in the term premia affect inferences concerning
future yields. For this purpose it is useful to consider the term premia defined relative to the h-month rather
than the 1-month yield. This is the expected excess return on holding a k-month bond for i (< k) months
relative to the h-month yield:

. 1 . . . .
Gge,t = EEt [qi*—h,t-l—h, - qi,t] - ygz,,t j=A{nr}.

According to the Markov-switching model, @i ., can be expressed as just a function of k£ and the current
state sy; @i (s¢). By focusing on @i (s¢) we can examine the variability of the term premium without having
to work with the data on one-month real and nominal yields.

To derive the regressions, assume that the maturity of the long-term bond is equal to & = 7h months.

Substituting the identity qi = —ky; , into the definition above and iterating forward gives
. ] ] T—1 . 1 T—2 )
Vy#t = yi,t - yi%t = Z(TT_%)EtAhy}j%H.hi + o Z Et@gf_hi(sﬂrhi)a (17)
i=1 1=0
Ve = Yy = Ve = (T = DEW_pgon — Yio) + Oklst)- (18)

The first equation shows the spread between the k£ and h-month yields equal to the weighted average of
expected changes in the future h-month yield, EtAhyf;’t 4 ni» Dlus the average of the current and expected
future term premia, Et@i_ pi(St+ni). In the second, the spread is equal to the expected change in the long-

term yield plus the term premium. Multiplying both sides of these equations by the spread and taking
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expectations of the resulting expressions gives

T—1 T—2

, 1 . .
Var(Vy,,) = Z_; Vi) += Z; Cov(EiOj,_y,(st+ni), VY. 1), (19)
Var(v/y‘;yt) = (- )COU(Etyk ht+h yk: & Vyk: t) + Cov(©, (St) Vyk t) (20)

These equations provide us with two variance decompositions for the spread. In (19) the variance com-
prises the weighted sum of the covariances between the spread and expected future changes in h-month
yields, and the average of the covariance between the spread and the (expected) term premia. In (20)
the variance comprises the covariance between the spread and the expected change in the long-term yield,
and the covariance between the spread and the term premium. Under the expectations hypothesis, term
premia are constant, so the second terms in (19) and (20) equal zero. Under these circumstances, changing
expectations regarding future yields account for all the variance in the spread. In the Markov-switching
model both terms in each decomposition contribute to the variance of the spread because the term premia
are time-varying. Thus, the question to be addressed is: How large is the contribution of changing yield
expectations to the variance of the spread given the presence of the time-varying term premia identified by
the model estimates?

We can estimate how much changing yield expectations contribute to the variance of the spread in the

data with two simple regressions:

T—1
Z(TT_i)Ah/yZ,,t-s-hz’ = ao+ alvyi’,t + Uk,
i=1
(21)
Yhoniin —Vhe = bo+bi=5Vyl, +ewn,  j={rn}

Regressions similar to these have often been used to test the expectations hypothesis, (see Campbell and
Shiller 1991 for a survey). Here they provide us with estimates of the variance decompositions. In particular,
under the rational expectations, the OLS estimates of a; and by respectively equal the first terms in (19)
and (20) expressed as a faction of Var(Vyii).20 These estimates can be compared against the predictions
of the model in two ways. First, we can use the model estimates to compute each of the terms in (19) and
(20) (see appendix for details). This provides us with asymptotic variance decompositions conditioned on
the parameter estimates. In other words, these decompositions match those derived from the regressions in
(21) estimated with an infinitely large data sample generated by the model. Second, we can use the model
estimates to simulate artificial data series equal in length to the data sample. The regressions in (21) can
then be run with these artificial data to derive a further set of variance decomposition estimates. Repeating

this procedure a large number of times will provide us with a Monte Carlo distribution of finite-sample

QOTOI see this ex.plicitl}./, note that C’ov(EtAhyg+hi,Vyiyt) = C’ov(AhyZ+hi,Vy]k7t) and Cov(Etyi7h7t+h - th,Vth) =
Cov(yi_ htth ~ yfc " Vyfc ¢ ) under the rational expectations assumption that forecast errors are uncorrelated with variables in
the information set Z; (e.g., Vyf ). Making these substitutions in (19) and (20) and dividing both sides by the variance of the
spread gives 1 = a1 + (1 —a1) and 1 = by + 1- I;l) where G and b; are the OLS estimates of a; and by.
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estimates for the variance decompositions based on the model.

The left hand columns of Table 4 report the estimated regression coefficients a; and b; using h = 12
with asymptotic standard errors computed under the null of the expectations hypothesis (i.e., a; = 1 and
b1 = 1). In the case of nominal yields, the estimates of a1 range between 0.64 and 1.07 while the estimates of
by are somewhat lower, ranging between 0.28 and 0.74. Although these estimates suggest that variations in
expected future 12-month yields contribute more to the variance of the spread than do varying expectations
concerning future long-term yields, none of the coefficients are estimated with a great deal of precision. In
fact, using the standard errors in column (ii), we cannot reject the null of a; = 1 or by = 1 in any case at
the 5 percent significance level. While these findings are consistent with the results reported in Barr and
Pesaran (1995) and Barr and Campbell (1997) and Bekaert, Hodrick and Marshall (1997a), they are rather
different from the results reported for the US term structure. In US data the estimates of a; for nominal
yields approach unity as the forecasting horizon k rises while the estimates of b; become increasingly negative
(see, for example, Campbell and Shiller 1991, and Evans and Lewis 1994). The estimates of a; and b; in
Table 4 point less strongly to the presence of time-varying term premia than do the US data.

The asymptotic contribution of changing yield expectations to the variance of spread implied by the
model estimates is reported in column (v). In the case of nominal yields, changing expectations of future
12-month yields account for more of the variance of the spread as the maturity of the long-term bond
rises; the implied estimates of a; rise from 20 percent at 24 months to 70 percent at 84 months. Changing
expectations regarding long-term yields contribute far less to the spread variance; the estimates of b; range
from 3 to 18 percent.?! It is clear from these results that the model estimates ascribe an important role
to time-varying term premia in the behavior of nominal yields.?? In fact, a comparison of the estimates
in columns (ii) and (v), seems to indicate that the model ascribes too little of the spread’s variance to
changing yield expectations. However, this is not the case. Column (ii) shows finite-sample estimates of the
variance contribution, whereas column (v) reports the asymptotic variance contribution based on the model
estimates. To directly compare the implications of the model against the estimates in (ii) we need to account
for the effects of estimating the regression in (21) in a finite sample. For this purpose, column (vi) reports
the probability of estimating a slope coefficient less than or equal to the value shown in (ii) based on the
Monte Carlo distribution of regression parameters generated by the model estimates. These probabilities
range between 18 and 27 percent. With this perspective, the important contribution of time-varying term
premium to the variance of the spread implied be the model estimates is not at odds with the behavior of
nominal yields over the sample period.?3

The lower panel of Table 4 reports results for real yields. Here the regression estimates of a; range from

0.61 to 0.66 while the estimates of by range from 0.22 to 0.33. These estimates are smaller than their nominal

2176 see the implications of the model estimates over long horizons, the table also shows the values of a1 and b; for the case
where the maturity k& of the long bond is 240 months. I did not run regressions for this case because the data sample only
covers 15 years.

22This finding is consistent with the results in Steeley (1997, 2000) that provide direct evidence for the presence of time-
varying risk premia in the UK nominal term structure. The presence of time-varying risk premia is also implied by the model
estimates reported by Remolona, Wickens and Gong (1996).

23 Accounting for the yield-spread regression results obtained in US data with a term structure model has proved difficult using
CIR-type models. In particular, Roberds and Whiteman (1999) found that these models could not simultaneously replicate
the regression results and account for other key features of the data. Dai and Singleton (2000) report greater success using
Semi-Affine models that, like the model here, allow for greater flexibility in modeling of the market price of risk (see above).
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Table 4: Yield Spread Decomposition Results

Nominal Yields

Data Sample Three-State Model
Parameter & | Estimate  Std. R? | Implied Parameter ~ P-value (%)

O @ @ ) )

ay 24 0.640 (0.233) 0.11 0.197 18.080
36 | 0.820  (0.244) 0.17 0.361 20.420
60 0.971 (0.231) 0.34 0.580 24.160
84 1.071 (0.226) 0.24 0.705 27.240
240 0.981

b1 24 0.280 (0.572) 0.01 0.030 18.080
36 0.490 (0.654) 0.01 0.056 21.720
60 0.743 (0.920) 0.02 0.125 24.260
84 0.700 (1.175) 0.01 0.176 25.180
240 0.729

Real Yields
Data Sample Three-State Model
Parameter &k | Estimate  Std. R? | Tmplied Parameter — P-value (%)

ar 24 | 0613 (0.084) 0.31 0.694 1.340
36 0.661 (0.038) 0.29 0.761 4.120
60 0.662 (0.050) 0.28 0.851 7.280
84 0.652 (0.084) 0.26 0.900 9.920
240 0.972

by 24 | 0225  (0.191) 0.01 0.388 4.340
36 0.336 (0.154) 0.05 0.402 4.080
60 0.337 (0.147)  0.05 0.454 3.300
84 0.291 (0.158) 0.03 0.502 2.620
240 0.607

Notes: Columns (ii) - (iv) report the estimated slope coefficients from the regressions in
(21) with h = 12. The maturity of the long-term yield is indicated by k in column (i).
Standard errors, reported in parentheses, are adjusted for conditional heteroskedasticity
and serial correlation using the methods of Hansen (1982) and Newey-West (1987); an
MA(k — 1) in the case of ajand an MA(h — 1) in the case of b;. Column (v) reports the
asymptotic/population regression coefficient implied by the ML estimates of the three state
model. The probability of estimating a coefficient smaller than the estimate in column (ii)
under the null hypothesis of the estimated three state model is reported in column (vi).
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counterparts and are estimated with greater precision. And, as a result, we can reject the null of a; = 1
or by = 1 in all cases at the 5 percent level.>* The asymptotic contribution of changing yield expectations
to the variance of the spread implied by the model range from 69 to 90 percent in the case of a; and from
39 to 50 percent in the case of b;. These estimates imply that time-varying term premium contribute less
to the variance of the spread asymptotically than is indicated by the OLS coefficients in column (ii). The
p-values in column (vi) show that based on the model estimates, the probability of observing coefficients as
low as those in (ii) in a finite sample is rather small; between 2.6 and 9.9 percent. These probabilities are
much smaller than those reported for nominal yields in the upper panel of the table. They indicate that the
estimated model is less able to replicate the finite sample behavior of real yields than nominal yields. This
is not entirely surprising. Recall that the model was least able to replicate the high volatility of 12-month
real yields. If some of this “excess volatility” is attributable to a lack of precision at the short end of the
real yield curve, then the real yield spreads used in the regression will include a measurement error and the
OLS coefficients in column (ii) will be biased towards zero. Because the model allows for these measurement
errors, the parameter estimates used to compute the asymptotic values of a; and by in (v) or the p-values
in (vi) are free from this bias. Thus, the difficulty in precisely calculating short term real yields from the
available data on index-linked bonds may explain why the p-values are smaller in the lower panel than in
the upper panel of the table.

Overall, these results show that in large samples time-varying term premia make a significant contribution
to the variance of both nominal and real spreads. In the nominal term structure, changing expectations
regarding future 12-month rates account for 20 to 98 percent of the spread’s variance as the maturity of the
long bond rises from 24 to 240 months. Expectations’ regarding future long-term yields only account for
3 to 73 percent of the variance. Time-varying term premia are somewhat less important in the real term
structure. Our model estimates imply that between 70 and 97 percent of the variance in the spread can be
accounted for by changing expectations regarding 12-month yields, and 39 to 61 percent by expectations
regarding long term yields. These findings suggest that predicting the future path of real or nominal yields
with any accuracy is extremely difficult over horizons of 5 years or less. The link between the current term
structure and expectations of future yields only approaches the simple relation implied by the expectations

hypothesis at very long horizons.

B. How Important is Inflation Risk?

I now turn to the second question: Can movements in real and nominal yields provide a reliable indicator
of changing inflation expectations? To address this question we need to consider the links between nominal
yields, real yields and expected inflation over different horizons. At the one month horizon, the spread

between nominal and real spot rates is

vy —yi = EtApepr + Yy,

24Gimilar findings are reported in Evans (1998) using an alternative forecasting equation for real yields. Earlier evidence on
the presence of time-varying real term premia includes the CIR-model estimates in Brown and Schaefer (1994) and the VAR
decompositions in Barr and Pesaran (1995).
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and so varies with the expected monthly rate of inflation and the inflation risk premium. Over longer
horizons, the nominal-real spread depends on the rate of expected inflation, the term premia in both the
nominal and real term structures, and the inflation risk premium. This can be seen by combining the

equation above with the nominal and real versions of (17) with h =1

Yeo =Ykt = Eiharn + Vg, (22)
=
Upe = 7 Z E, (eg—z’,t-&-i — O _ipyi T Vigi) -
i=0

The first term on the right is the expected rate of inflation over the next k months, %EtAkak, the second
is the multi-period inflation risk premium, Wy ;. This is the average of the expected difference between the
term premia on nominal and real bonds, Gg,t — 0.4, plus the (one period) inflation risk premium, ;. The
Markov-switching model implies that Wy, can be expressed as just a function of k£ and the current state
56, W) (s¢). When W/ (s;) = 0, (22) describes the k-month version of the Fisher Equation.

Equation (22) has two important implications for the relation between yields and expected inflation.
First, the presence of time-varying term premia, Giﬂﬁ, and inflation risk premia, 1,, doesn’t necessarily imply
that the spread between nominal and real yields will be an unreliable indication of inflationary expectations.
If forecasts of 0 _; , =0} _; ;1 ;+V1+; are approximately constant for horizons ¢ greater than say ¢*, variations
in Wy ; will become very small as k becomes much larger than ¢* because ¥ ; depends on the average of
the forecasts at all horizons ¢ < k. Notice that this differs from the requirement needed for the expectations
hypothesis to approximately hold at long horizons. For this we need that the variations in % Zf:_ol Etﬁf;fi#t +i
die out as k rises (see equation (19) above with h = 1). Forecasts of the term premia may be quite variable at
particular horizon i, while forecasts of the difference between the nominal and real premia may be constant.
Although the real and nominal term structures provide unreliable guidance concerning expected future yields
at all but the longest horizon, it is still possible for these same term structures to provide (more) reliable
inferences about inflationary expectations over short horizons.

The second implication of equation (22) concerns the relation between the size of the multi-period inflation
risk premium Wy, and k, which might be termed “the term structure of inflation risk”. An important
determinant of the size of Wy, ; is the difference between the nominal and real term premia. Recall that Hi,t
identifies the expected excess log return on holding a k—period bond relative to the spot rate. The difference
between 0, and 0} , therefore indicates the degree to which investors are compensated for inflation risk
inherent in holding long-term nominal bonds. Some intuition into the factors governing the difference can
be gained by considering the case where k equals 2. Using (13) and (14) above, we can write

T

1
g,t — U = 5 (Vart(thH) - VaTt(qu-s-l))
+Cov; (Apt+1,qzl+1) + Covy (mt+1>qtr+1 - qlh) . (23)
The variance terms in the first line arise from Jensen’s inequality because the term premium are defined in
terms of log returns. The second line shows that inflation risk contributes to the nominal term premium

through two components; the covariance between inflation and the future price of the nominal bond, and the

covariance between the real kernel and the difference between the future prices of real and nominal bonds.
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The first term arises because an unexpected rise in prices between ¢ and ¢ + 1 reduces the real value of the
nominal long-term bond at ¢+ 1. This makes holding long term nominal bonds less attractive so the nominal
term premium must rise to compensate. The second term adds to the premium because a positive covariance
implies that the unexpected return on holding long-term real rather than nominal bonds is high when the
future pricing kernel is unexpectedly high. In a representative agent model, this occurs when marginal utility
is high, so once again the nominal term premium must rise to compensate.

The upper panel of Figure 5 shows estimates of Wg(s) plotted against the horizon k in months for
s = {1,2,3}. Here we see that the term structure of inflation risk has a negative slope in all three states.
The inflation risk premium is highest in state one, starting at approximately 1 percent when £ = 1 and
falling to minus 1.8 percent at k = 120. The premia in states two and three are quite similar; falling from
approximately 0.6 percent at k = 1 to minus 3.5 percent at k = 120. These estimates imply that the spread
between nominal and real yields overstates the rate of expected inflation by between 1 and 0.6 percent at the
one month horizon. At long horizons, the opposite is true. At the ten year horizon the spread understates the
rate of expected inflation by between 1 and 3.5 percent. Overall, these plots show that the Fisher equation
is a rather poor approximation to the relation between the level of nominal yields, real yields and expected
inflation in the UK.
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Figure 5: The multi-period inflation risk premium ¥y, (top plot), and average rate of expected inflation
Eymy 14+% (bottom plot), in states; s = 1 (solid line), s = 2 (dashed line) and s = 3 (short dashed line).

28



Table 5: Variance Decompositions
G (ie = Vb Brmeesn)  Cov (s Bemun)  Cov(venvhe)  Cov (i, W)
Va?"(ylrgl,t - Z/;’;,t) Var(ylﬁt) Var(y?ﬂs) Var(yl?,t)
(i) (i) (iii) (iv)

1 0.966 1.452 -0.561 0.109
12 0.948 1.195 -0.291 0.096
24 0.940 0.989 -0.010 0.022
36 0.975 0.968 0.103 -0.071
60 1.111 1.111 0.128 -0.239
84 1.222 1.228 0.108 -0.336
120 1.319 1.320 0.088 -0.407
Variance decompositions calculated from the estimates of the three-state model (see appendix for
details).

The lower panel of Figure 5 shows the average rate of expected inflation in each state plotted against
the horizon k£ in months. Expected inflation rises with the horizon k in states one and two, and falls in
state three. There are considerable cross-state differences in expectations at both short and long horizons.
At one month, the expected rate of inflation ranges from 0.3 percent in state two to 10.3 percent in state
three while the range at ten years is 7.1 to 8.7 percent. These pronounced differences suggest that the states
identified by the model can be closely associated with three distinct inflation regimes: A regime of slowly
rising inflation in state one, quickly rising inflation in state two, and slowly falling inflation in state three. Of
course nothing hangs on this taxonomy. The point to emphasize from the plot is simply that very different
sets of inflationary expectations are embedded in the dynamics of term structure.

The term structures of inflation risk shown in Figure 5 imply that the spread between nominal and real
yields provide an unreliable estimate of the level of inflation expectations because the size of the inflation
risk premium differs significantly across states at all horizons. These cross-state differences also affect how
accurately variations in inflation expectations are reflected in the nominal-real spread. To see this formally,

I compute two variance decompositions based on (22):

V‘”’(yl?,t - th) = Cov (@/I?t - y;,t’ Eth,tJrk) + Cov (Z/l?t - yl:,t, ‘I’k,t) )
(24)
Var(y};t) = Cov (y,’j,t, Et7rm+k.) + Cov (y,ﬁt, y,zf) + Cov (yﬁt, \Ifk,t) .

The first equation writes the variance of the spread as the sum of covariance with expected inflation
and covariance with the multi-period inflation risk premium. Clearly, the closer the second covariance is to
zero, the more accurately will variations in the spread reflect changing inflation expectations. The second
equation provides a variance decomposition for nominal yields in terms of their covariance with expected
inflation, real yields and the inflation risk premium. This equation allows us to examine the degree to which
changes in inflation expectations can be accurately inferred from nominal yields alone.

Column (i) of Table 5 reports the contribution of changing inflation expectations to the variance of the
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spread based on the three-state model estimates. For horizons ranging from 1 to 36 months, variations in the
inflation risk premium contribute little to variance of the spread. On average, a one percent increase in the
spread is associated with a 0.94 to 0.97 percent increase in expected inflation, a 3 to 6 percent overstatement
of the change in expected inflation. Variations in the inflation risk premium become more important at
horizons beyond 5 years. As a result, changes in the spread understate the change in expected inflation by
11 to 32 percent. For example, at 84 months, a one percent increase in the spread is associated with a 1.22
percent increase in expected inflation.

Columns (ii) - (iv) of the table show how variations in expected inflation, real rates and the inflation risk
premium contribute to the variance of nominal yields. Column (ii) shows that changes in nominal yields
understate the variations in expected inflation at very short and long horizons. Columns (iii) and (iv) show
the reason for this pattern. At short horizons real yields are very variable and negatively correlated with
expected inflation. Thus, insofar as real shocks contribute to changing inflation expectations, an opposite
movement in real yields offsets their effect on nominal yields. This is illustrated in the table by the large
negative covariance between short-term real and nominal yields for k equals 1 and 12. Real yields are much
less variable at long horizons. Now variations in nominal yields primarily reflect changes in expected inflation
and the inflation risk premium. Because these changes are negatively correlated (see Figure 5) the effect on
nominal yields of an increase in expected inflation is partially offset by the associated fall in the inflation
risk premium. At the two to three year horizons, the correlation between expected inflation and real yields
is offset by the correlation between expected inflation and the inflation risk premium. At this point, nominal
yields move almost one-to-one with expected inflation, a finding consistent with the Fisher hypothesis (Fisher
1930).

The results in Table 5 provide straightforward guidance on how best to draw accurate inferences about
changing inflation expectations. Over horizons of one to twelve months, more accurate inferences can be
derived from the spread between nominal and real yields than from nominal yields alone because short-term
real yields are strongly (negatively) correlated with expected inflation. For longer horizons, inferences based
on the spread and nominal yields are quite similar. They are reasonably accurate over horizons of two to
three years. Beyond this point, changes in the term structure increasingly understate changes in inflation

expectations.

VI. Conclusion

This paper has examined how changing expectations regarding future yields and inflation are reflected in
the term structures of nominal and real interest rates. For this purpose, I developed a bond-pricing model
with Markov-switching that allows for changes in the degree of mean-reversion displayed by spot rates, time-
varying correlations between real and nominal risk factors, and flexibility in the link between the dynamics of
the risk premia and interest rate volatility. A formal comparison of a one, two and three-state version of the
model revealed that the three state model best characterized the UK data. This model does a remarkably
good job at matching the behavior of real and nominal yields over the sample period. It also identifies
distinct differences in the behavior of the real and nominal term structures across the three states.

I then used the model estimates to quantify the importance of time-varying term premia in the real and

nominal term structures, and time-varying inflation risk premia linking nominal and real yields with expected
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inflation. I found that the presence of time-varying term premia make changes in nominal and real yield
spreads a very unreliable indicator of changing yield expectations over horizons less than 5 years. The link
between the current term structure and expectations of future yields only approaches the relation implied
by the expectations hypothesis at very long horizons. Inferences regarding expected inflation based on the
Fisher Equation are similarly flawed. Estimates of the inflation risk premium imply that the spread between
nominal and real yields provide unreliable estimates of the level of inflation expectations at all horizons.
Accurate inferences about changing inflation expectations can be obtained using either the change in the
spread between nominal and real yields, or the change in the nominal yield alone, over a 2 to 3 year horizon.
Outside this window, changes in the term structure either understate or overstate the change in expected
inflation by a considerable degree.

Overall, these results clearly indicate that time-varying term premia and inflation risk premia significantly
contribute to the dynamics of real and nominal yields in the UK. The model links variations in the risk premia
to changes in the dynamics of spot rates and expected inflation via switches in the state variable. However,
it does not relate switches in the state variable to economic fundamentals, such as the policy regime. In this
sense, Markov-switching is something of a “black-box” that enables us to develop a theoretically consistent
and empirically viable model. Future research will have to look inside this box if we are to deepen our

understanding of the UK term structures.
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Appendix
Data

The analysis in this paper uses data on nominal and real yield curves derived from the secondary market
prices of nominal and index-linked bonds that trade in the UK. The nominal yields come from The Bank of
England and are constructed using the method described in Deacon and Derry (1994). Briefly, a no-arbitrage
condition is used to link the prices of discount bonds to the prices of coupon-paying bonds seen in the market.
Then, at each date, the parameters of a discount function are chosen to match observed prices against their
theoretical values implied by the no-arbitrage condition. The yield curve for each period is then constructed
from the estimated discount function.

The construction of the real yield curve is complicated by two factors. First, index-linked bonds issued
by the UK government only provide incomplete indexation for the principle and coupon payments because
there is an eight month indexation lag built into the payoff structure of the bonds. Second, there is a two
week reporting lag in the price index. As a result, uncertainty about the current and future price index has
some effect on the prices of index-linked bonds. Both these facts make it impossible to derive the real term
structure directly from the observed prices of index-linked bonds. However, in Evans (1998a) I show how
real yields can be constructed using a two-step procedure. First, the index-linked yield curve is calculated
from market prices using a no-arbitrage technique like the one used to find the nominal term structure.
Second, the effects of inflation uncertainty (arising from the indexation and reporting lags) are purged from
the index-linked yields to derive estimates of the real yield curve. In step one, I utilize the nominal discount
function estimated by The Bank of England together with the prices of index-linked debt. As an alternative,
one could simultaneously estimate the discount functions for nominal and index-linked bonds. This would be
a somewhat more complex undertaking but might have the advantage of further reducing estimation errors
in the yield curves.

Bond Price Solution

To show that equations (10) and (11) describe equilibrium bond prices, I proceed in two steps. First I show
that under the proposed solution, expected excess holding returns are a function of the maturity of the
long-term bond and the current state. In the second step I derive the necessary restrictions on (10) for this
property to hold.

Step 1: First write the equilibrium condition in (9) as

1=F [exp(—djl‘url + @ — G)IT (A1)
for j = {n,r}, where Z; is the investor’s period ¢ information set. For the case where k = 1, we can calculate

the expectation directly by noting that the conditional distribution of x4, is normal, and ¢j,,; = 0. After
some rearrangement, this gives us

y{ = —qit = d]Zt + d‘]KJ(St) — EdJA(St)Q(St)A(St)/d]/.
With the normalization, d/r(s) = $d7A(s)Q(s)A(s)'d”, this equation simplifies to y! = d/ 2 and bond prices

satisfy (10) with A (s,) =0, and Bl (s;) = d’.
For the case where k > 1, I use the law of iterated expectations to rewrite (Al) as

1= E [E[exp(—dijl =+ qi’—l,t—‘rl — qz,,t)|It, st+1]‘It:| . (AQ)

Under the proposed solution, the joint distribution of x;y; and qi'_l ++1 conditioned on {Z;, st4+1} is normal,
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so the inner conditional expectation can be written as
exp (E[(id%tﬂ T G i1 — Go) Te e + %Var(—djxtﬂ + Gy g1 1Lt ‘9”1)) ’

Substituting for z;;jand qi_u 41 using (8), (10) and the fact that yl = d’z, and combining the result with
(A2) gives

exp (d-jf'i(st)) =F [exp (E[(Si,t+1|z-t, St+1] + Fi71(8t+1, St)) ‘ It} 5 (A3)
where 6i,t+1 = qi’—l,t-&-l - qi’,t —y] and
Uiy (sernse) = 5 (A(se) + Bl (s041)) Qo) (@ Alse) + By (s141)) -

Notice that E[(S'Z;’Hlﬂt, st+1] only depends on period ¢ + 1 information via s¢11. Thus, given Z;, there are
S possible values for E [5i 1|t st+1], corresponding to the S-states of the Markov process. Let @f; , be an

S x 1 vector with #’th. element equal to E[(S'Z:’tﬂﬂt, St+1 = 4]. (A3) can now be written as

exp (djﬁ(s)) =F [exp <€St+1<13£7t + Fi’/,_l(StJrl, s)) ‘ It] = Z§=1 II; s exp (ﬁg@ii + Fi_l(é, s)) ,

where £, denotes an 1x S vector with a one at element s and zeros elsewhere, and II; ; = Pr(sit1 = 8|st = s).
Stacking the .S versions of this equation gives

[ e T [ 10y el (D Mg e k15D T T ehr®is ]
i J J ] i
ed w(s) - Hl,serk_l(l’s) Hs,serk_l(s’s) HS,serk_l(&s) ezsq)k’t 5
ed’ 1(5) I, Sefi_l(LS) - IIg SeF{C_l(S,S) els P

or, more compactly,
exp, (K7) = P{_, exp, (@fm) ,

where exp, (x) denotes the exponential operator applied to each element in a vector y. Provided Pg_l is
nonsingular, we can rewrite this matrix equation as

], =ln, ((73,11)1 exp, (/cj)) : (Ad)

where In,, () denotes the log operator applied to each element in a vector x. Notice that the right hand side
of this expression only depends on x(.), I',_;(.,.) and the transition probabilities. Thus, expected excess

returns, F [5% ' +1|It, s¢+1], do not depend on z; even though z; € I;. The equilibrium term premium can now

be easily found by applying the law of iterated expectations to the definition Hiﬁ ;= E[éi,t Iz -

ei,t E [E[6i:7t+1|z-t7 St41) ‘ It}
= éStH(I)i,t (A5)

where II is the matrix of Markov transition probabilities with II; ; = Pr(s;41 = i|s; = j). Combining (A4)
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with (A5) gives

07(s) = £,11' In, ((’P,z_l)_l exp, (}CJ)> , (A6)

which is the value of the term premium in state s consistent with the equilibrium condition in (A1), the
dynamics of 2,41, and the bond price solution in (10).

Step 2: To find the restrictions on A7 (s) and Bj.(s) consistent with this expression for the term premium,
T use (10) to substitute for q/{;q,tﬂ’ q{,’t and y/ in the identity %"t = E[6i7t+1|2t]. This gives

Ol = Aso) + Blls)m — B[4l (sm) + Bl (see)zn|T] - d'z
= Al(se) = Eu [AL(5) + BLy(5,) (1(3) — alson(s0))] + (B(s) = B, [Bi_yB)als)] — ') 2

where the second line follows from (8). Since the k-period term premium is a function of k£ and s;, the term
in parenthesis must equal a vector of zeros. Hence

A(s) = B [ALL6) + Bl () (1) — als)n(s)| + 8.

Bi(s;) = B, [Bi71(§)a(st)} v

The recursions for Ai (s¢) and B,i(st) in (11) follow from these equations with Qit = 9{; (s¢)-
Comment: The form for the term premium function in (A6) assumes that 7)13;71 is nonsingular. Alternative
derivations for the term premium function exist for cases were Pj_; is singular. To illustrate, consider the

case where S = 2, a(l) = «(2), and II;; + Iy, = 1. Although Plg—l is singular for all & under these
circumstances, the term premium function can still be readily found. In particular, it is easy to show that
bond prices satisfy

Qi,t = Al(s) + Bla,
As) = APAEs) (FAE) 5 (@A) + BL,) o) (#A(5) + B, )
—In { B, exp(—4]_,(3) = Bl (u(3) — ap(s))) }
Bl = Bl_a+d,

with A)(s) = 0 and B} = [0,0]. (To verify this, substitute the proposed solution into (A1) and equate
coefficients.) The term premium function is therefore

0uls) = 5 [FAG)PAE) ~ (@A) + BL U @AG) + B,

—{n { B exp(—AL_1 () = Bl (6(3) — ap(s) b — o [A]_1(3) + By (4(5) — an(s)] }
In principle, the bond price solution can be found in a similar manner for other cases where Pg_l is

singular. In practice, singularity in 77,1_1 did not turn out to be a problem for the two and three-state
models estimated in the paper so equilibrium bond prices are identified using (10) and (11) with (AG6).
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Risk Premia

If the joint distribution of z;;and qg 41 conditioned on Z; is normal, the equilibrium condition in (A1) with
k = 2, becomes 4 ‘ ‘ 4 ‘

El(~dzer1 +qly — 630)| L] = —5Var(=d x4 + gl [T2).
Substituting for ;41 on the right hand side and simplifying, using the fact that d/x(s) = 1Var(—d'z;11),
gives , 4 ‘ ,

057,5 + %Var(qg_i_lﬂt) = Cov(d z441, q§+1|l't).

This expression only holds exactly in the case where; (i) there is a single state, or (ii) where u(s) = p. Under
other circumstances, the conditional distribution for ¢/, is non-normal because g7, depends on s, and
u41. The expression above is the basis for the approximations shown in the first lines of (13) and (14). The
second lines are derived by substituting for ;41 and ¢/ = —d’ 2;41 in the covariance term:

Cov(d w41, ql41|Te) = —d"A(se) Elersr, i(se1) | Teld” — d2A(sy)Q(se)d”.

The first in this expression equals zero because e;y; is independent of s;1;. The second lines in (13) and
(14) are therefore equal to —d? A(s;)Q(s;)d?’ for j = r and j = n respectively.
The equation for the inflation risk premium in (15) is derived by combining the nominal and real versions
of (Al) with k = 1:
Elexp(=d w1 +y;)| 1] = E[exp(=d"xi41 + 1) Ti] -

Using the conditional normality of x;,1, this expression simplifies to
be=y —yi = BlApn|L] = sVar(d e |L) — sVar(d e |T), (AT)

= —COU(dTLEH_l, (dn — dr) l‘t+1|It) — %Var((d” — dr) l‘t+1|It),
= COU(mt+1, Apt+1|It) — %Var(ApHﬂIt),

which is the form of (15). Substituting for the variance terms in the first line gives

P = 2d"A(s:)Qse) (d"A(sy)) — $d"A(s)Qs1) (A" A(s1))" = ¥(s1) (A8)

t— 2

so the inflation risk premium can be written as a function of s;.
Section V considers the multi-period versions of the term and inflation risk premia. Combining the
definition 0} , = Elq},_, ;1 — q&; — ¥7|1Z] with the equilibrium relation 0, , = 0x.(s;), we have

_qi,t =F [—Qiq,mlft} + yi + %(St)-

Tterating this equation forward (with qut = 0) gives

k—1

qi,t == ZE [yg—i-i + 9£—i<3t+i)|zt} . (A9)
i=0

We can use this equation to show that the multi-period term premium @iv_t = %E[qi_h’wh — qi,’tﬂt] — yi,t
is a just a function of k and s;. Substituting (A9) into the definition for @i;,t and simplifying gives

Ea

—1 ) 1 k—h—1 ) 1 h—1 )
E [9i7i<5t+i)|zt} ~ % > E [ei—h—i(sﬂrhﬂ'”zt} — % D E [QL@'(StH)Ut} :

=0 =0

Joo_
Oy =

> =
I
=}

i

Since s; follows a first order Markov process, all the conditional expectations in this expression are functions
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of the current state, so @i , can be written as a function of the current state; @',i(st).
To derive equations (17) and (18), I write the multi-period premium in terms of yields and combine the
result with ©7 , = ©7.(s;) to give

Gi(st) = E[Tyi7t - (7_ - 1)yi_h,t+}L|It] - y}jma (AlO)

where 7 = k/h. A simple rearrangement of this expression gives (18). To derive (17), I rewrite (A10) as

T <yli:t - y;lt) = Gi(st) + (7= 1)E[yi;h,t+h - y'}jp,t+h|1—t] + (7 — 1>E[Ahyz,t+1|1—t]

and iterate forward.
The equation for the multi-period inflation risk premium in (22) comes from taking the difference between
the nominal and real and nominal versions of (A9):

k—1
1
yl?,t - yI:,t = 7 ZE [ythrz - y;+i + 0% _i(St1i) — 927¢(8t+i)|1t] .
0

i=

Substituting for y; ; — yi,; with (A8), gives

Ykt =Ykt = Bl + Vi,
=
W = 7Y BORi(se4s) = Oi(si4a) + (s040) |, (A11)
=0

which is the form of (22). As above, all the conditional expectations in the second line can be written as a
function of s; so ¥y can also be expressed as a function of the current state; ¥ (s;).
Transforming the Model

The analysis in Section V uses long-horizon expectations of future yields and inflation. Computing these
expectations requires forecasts of z; which follows

Zep1 = p(Se41) + ase) (20 — p(se)) + wipa, (A12)

where w1 = QY 2(s¢)uss1. Finding long-horizon forecasts from this process is complicated by the presence
of switching in «(.), because it effectively makes the process for z; nonlinear. To alleviate this problem, I
transform the model.

First, I represent the Markov process for s; as a Vector Autoregression. Let ¢; = £}, so ¢; = [1,0.....]" if
st =1,and ¢ =[0,1,0.....]" if s = 2, and so on (as in Hamilton 1994, p 679). We can now represent the S
-state Markov process by

G = G + v, (A13)

where vi41 = Gq1 — E[Ge41]Ce, Ce—1,..]-
Next, let n; = (¢ ® v+ where v = 2z — pu(s¢). We can now rewrite (A12) as

V41 = QN + Wi, (A14)

where a = [a(1), ..a(s), ....ca(S)] . This equation gives us a linear forecast for ;41 in terms of n,. To determine
the multi-step forecasts we need to derive the dynamics for n;. For this T use (A13) and (A14) to substitute
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for (t+1 and ~;41 in the definition of 7;y1. After some matrix algebra, this gives us

N1 = (H®a)(G@n) + e,

€r1 = Vi1 @ (ang) + vep1 @ wigr + (1¢) @ wigs.
It is straightforward to check that ¢; ®7; can be written as Y1, for a matrix T comprising of ones and zeros.'
Combining these results, we can write (A13) - (A15) as a vector system:

Yt+1 0 [e% 0 Yt W41
N1 | =10 (Iea)T 0 M|+ e |
Cra1 0 0 IT Gt Vi1
or, more compactly,
Zt+1 == AZt + £t+1- (A15)

Note that under the assumptions of the model, E[£:41|Z;] equals a vector of zeros. Hence (A15) implies that
E[ZHZ-\L] == Ath.

The final step is to show that expected inflation and equilibrium yields can be written in terms of the
elements of Z; rather than s; and z;. Substituting ¢ = 2z; — p(s¢) into the bond pricing solution in (10),
gives ‘ ‘ ‘

Yo = 5C () + £ Bi(se)ve,
where CJ(s) = [A(s) — Bl(s)u(s)] is a state-dependent scalar. Now note that CY(s;) can be written as
[CL(1),...C(s),...C}.(S)]¢e and Bj.(s¢)y: can be written as [B}(1),...B}(s), ... BL(S)|n:. Making these substi-
tutions in the equation above gives

vie = E[0.0.BL1), s Bi(s), - BU(S), CL(1), ..CLls), . CLS)| 2,
= M, Z:. (A16)

The model identifies the expected rate of inflation as E[Ap;y1|Z¢] = Kp(st) + pp(s¢) + [0, 1]74. Proceeding as
above, we can write expected inflation in terms of Z; as

BAplT] = [0,1,0,.00,0.0, (5p(1) iy (1), s (5p(5) + tp5)), o (p(S) + 1 (8))] 20,
= GZ. (A17)

Variance Decompositions

Table 4 reports estimates of the variance decompositions in (19) and (20) for the spread between long- and
short-term yields Vyj. , =y}, — 43, ,- Using (A15) and (A16), we have

!/
)

Var(Vyi,’t) (Hi — Hi) S (Hi - Hi)

COU(Etyifh,tJrh - ?Ji,t’ Vyi,t) = (Hifh-Ah - Hi) S (Hi - Hi)

!
)

1For example, in the S = 2 case the possible values of (¢ are [1,0]’ and [0,1]’, corresponding to s; = 1, and s¢ = 2. When
se =1, n = [v,,0,0) and ¢t ® ne = [v4,0,0,0,0,0,0]. When s; = 2, n; = [0,0,+,]" and ¢t ® n: = [0,0,0,0,0,0,7.]". So in this
case
02 02 02 Io

where Iz denotes the 2x2 identity matrix and 02 a 2x2 matrix of zeros.

T’:{IQ 02 02 02}
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7—1 T—1

D (FCou(BA Y] i Vi) = D (DM, (Ahi - Ah(i_n) S (Hi - Hi)l

i=1 i=1

where S denotes the covariance of Z;. Column (v) of table 4 reports

. . N
S () Coo(BAry) i Vil i (M), (A — A’W-U)S(H; —H{L)
Var(Vyj,) (- 7) s (1 -3

a)p =

and

. . N/
(1= DCov(Eey},_p, 1n — Yirs V¥ir) (r—1) < fn A — Hi) S (Hljg - H?z)
1= T =

Var(Vy;,,) (g~ 74 s (i~ 7})

for h = 12, with 7 = k/12. The matrices A and Hi are calculated directly from the estimates of the three-
state model. The covariance matrix S is computed by Monte Carlo simulation of the Z; process (based on
the three state estimates) over 120,000 observations (i.e. 10,000 years of monthly data).

The k-period rate of expected inflation can be computed from (A15) and (A17) as

E[ﬂ'k t+k |It

P?‘|>—‘

k
Z Apt-l—z |It k Z QAZZt th (A18)

Combining this equation with (A16), gives the following equation for the multi-period inflation risk premium:
Uy = [Hy — Hy — Fi] Z¢. (A19)

Since Uy, is a function of s; (see equation (A1l) above), only the last S columns of [H} — H} — Fy| are
nonzero and comprise [Py (1), ..., ¥r(s),..., Ux(S)]. The upper panel of Figure 5 plots ¥j(s) against k for
s={1,2,3}.

To compute the variance decompositions reported in Table 5, T use (A16), (A18) and (A19) to write

Cov (y;?,t — Ypts Etﬂ'k,t-i—k> _ (HP — HL)S(Fr)
Var(ye, — Vi) (Hy — M) S(Hy —Hp)"”
ol Eones) sy
VarGi) HLSH
Cov (vhotie) _ 1p503y
Var(y,’;’t) - HES(HE)!
Cov (yﬁ,u \Ijk,t) HIS(HY — Hy — Fr)

Var(yy,) N HES(H}) ’

The estimates in the table are based on the Hi and Fj, calculated directly from the estimates of the three
state model, and S is generated by the Monte Carlo simulation.
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Estimation Details

The state space form of the model to be estimated is given by equations (8) and (16)

0 = A(sy) +B(se)z + &, (16)
ze1 = p(ser1) + alse) (2 — p(se) + QY2 (se)ugn, (8)

where & ~ i.i.d.N(0,R) and us41 ~ i.i.d.N(0,I). For the case with no regime-switching and pricing errors
in all the yields (i.e., R has full rank), the parameter estimates can be found by maximizing the log sample
likelihood that is formed recursively from the Kalman Filter as in Pennarchi (1991). This is the method I
initially used to estimate the one-state version of the model. When switching is present and R has full rank,
the Kalman Filter needs to be modified to accommodate the unobserved states, s;. Kim (1993) describes
how the sample likelihood can be approximated in this case by combining Kalman Filter equations with the
Hamilton (1988) algorithm. This is the method I initially used to estimate the two and three-state versions
of the model.

The exact sample likelihood function can be found when there are no pricing errors in the equations
for three-year real and nominal yields. Let §; = [J,,95,)' where ¢;, is the vector of 3-year yields,
with A(s) = [A](s), A4(s)]", B(s) = [B](s), B4(s)] and & = [0, &5 )’ partitioned conformably. Given the
recursive factor structure of the model, Bj(s) has rank 2, so the risk factors can be found directly as

=B (st) (91,6 — A1(s¢)) . We can now rewrite the model as

J1t+1 = Ci(si1,8t) + D1(Se41,80)U1,6 + €41, (A20)
G241 = Ca(si41) + Da(si41)01,641 + E2,641, (A21)

where Et41 N(O, B1(8t+1)Q($t)B/1(St+1)) with

Ci(si+1,8:) = Ba(ses1) (u(si+1) — alse)p(se)) + Ai(sit1) — Di(se+1, s¢)A1(se),
Dy (si41,5:) = Bil(sipr)a(s)Bi' (s1),

Ca(si+1t) = Aa(sey1) — Da(se41)A1(Se41),

Do(si41) = Ba(si41)By (se41)-

(A20) and (A21) constitute a standard Markov switching model that can be estimated by maximum likelihood
using the Hamilton (1988) algorithm. The parameter estimates reported in Table 2 were obtained in this
manner.

Identification

Consider the model
Tip1 = O+ k(s 4 Z + A(s) QY2 () upsr + X241, (A22)
Zr = p(sern) +alse) (B — p(s1) + Q% (sp)urga, (A23)

where e;41 is a vector of i.i.d. N(0,1) shocks, ¢ = [, ¢p] is a vector of constants and ¢(s) = pu(s) — ¢. If
we choose ¢,,, and ¢, such that d/¢ = 1d/Sd/’ for j = {n,r}, equilibrium bond prices satisfy (10) with z
replacing z; and ¢(s) replacing p(s) in the parameter recursions (11).

To substantiate this claim, I first use (A22) to substitute for x;11 in (A1) for the case where k = 1.
Simplifying the resulting expression gives,

W= @74 (@ (5(s0) +0) = 3 A(s)Qs0)(Aso)d ) — 3/ Sd”) = iz,

Hence, short rates follow the same process except that the long run mean within each state is given by d/¢(s)
rather than d’p(s).
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Next, consider the prices of long term bonds. Using (10) with (2; replacing z:) to substituting for q/{;q,t 1)
qi , and y! in the identity Hi ¢ = E[éi t411Tt), gives

O = Allso)+Bl(s)z — B [Al_y(se01) + Bl_y(s1:1)2T] — a2,
= AL(s) = B, [4]_,(5) + BL_,(5.) (¢(5) — al9)e(s))]| + (Bl(s) = B [BI_,(B)als)| - &) 2,
= ek’(st)a

where the third line follows from the recursions for A;C(s) and B',i (s) in (11) with ¢(s) replacing p(s). Thus,
the term premium continues to be a functions of k and s;. All that now remains is to verify that the term
premium function remains the same. To show this, notice from (A22) and (A23) that

Elexp(—d’z41 + qi_17t+1 - Qi,t”It: St+1] = exp (*dj’f(st) + E[6i7t+1|1-t7 5t+1]>
X exp (%(de(St) + Bl (s141)Qs0) (@ Asi) + Bl (s141)) + s Sd" — dj¢> -
Since the last two terms cancel, the implications of the equilibrium condition in (A2) can still be written as
(A4) and the term premium continues to be determined by (A6).

While the value of ¥ (or equivalently ¢) has no impact on the term premia, it does affect the level of the
inflation risk premium. From (A7) we have

Py = %Var(drxtﬂﬁt) - %Var(d”xtﬂﬁ}),
= Ld"A(s0)Qst) (d"A(s1)) — 2d"A(s0)Q(s¢) (d"A(sy)) + 3d7Sd™ — Ld"sd™.

The last two terms add a constant to the expression for the inflation risk premium derived in (A8) above.

Switching Tests

To test the null hypothesis for the null of an Si-state model versus the alternative of a Ss-state model
(S2 > S1), we need to deal with the presence of parameters that are only identified under the alternative.
The idea behind the Gallant test is to first calculate estimates of the dependent variables from the Ss-
state model using a range of values for the unidentified parameters (under the null). These estimates are
then added to the Si-state model and their significance judged according to an F-test. This procedure is
implemented in four steps:

1. Let B; represent a given set of values for the parameters of the Ss-state model. These values are chosen
independently on a uniform grid for each parameter that ranges from 0.8 to 1.2 times the value of
the maximum likelihood estimate. For ¢ = 1,2,...N, use §; to calculate the fitted values for real and
nominal yields, Y? ={y}}1 ;.

2. Extract d principal components from the matrix Y = [Y!... Y?... Y¥] to the matrix W ={w;}L_;.
In practice, I set N = 1000 and d = 5.

3. Estimate the S;-state model with the addition of these components, i.e.,
Ut = A(st) + B(st)z + Cwe + &,
where C is a diagonal matrix. Call this the augmented S; model.

4. Let gf ! and g)ts " denote the fitted values for the yields based on the S; model and the augmented
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Si1model respectively. Compute the following residual sum of squares

RSSs; =

T
RSSs, = > (B —9") G —9:0)
t=1

*

~ ST ~ ~S
@ —0.") (G — G t)-

M=

ﬁ
Il
_

Under the null of no switching, the statistic

(RSSs, — RSSs:)(T —d — k)
RSSg-d

is distributed F(d,T — d — k) where k is the number of parameters in the S;-state model.

To understand the practical problems with undertaking the Hansen (1992) test for the null of an S;-state
model versus the alternative of a Sz-state model (Sz > S1), consider the following partition of the parameter
vector; 8 = (6,,0), Ba = (B}, 5.)". We are interested in testing null that 3, = 0, where 3. is the vector of
nuisance parameters unidentified under the null. (4 is the vector of parameters identified under both the
null and the alternative hypothesis. Hansen’s test statistic is

LR;” = Sgp(LRT(/Ba)/ V VT(ﬁa))a

where LR7(3.)

VT(ﬂa)

qt (ﬂm Bd(ﬂa))

LT(/Baa/éd(/Ba)) - LT(07Bb7Bd(07/Bb))7
T
th(ﬂa,ﬁd(ﬂa))z,

t=1

lt(ﬂaaﬁd(ﬂa)) - lt(O,Bb,Bd(()»Bb)) - %LRT(Ba)a

with Bd(ﬁa) = argmaxg, L1 (8., Ba) and Ly (B4, B4) = 23:1 l; is the sample likelihood.

Consider the case where S; = 1, and Sy = 2. For the model studied here, the vector 3y includes
the elements in {(x(1), u(1),a(1),A(1),Q(1),X}, By = II;; — 1 and the vector 3. includes the elements of
{k(2), 1(2), @(2), A(2),Q(2), 122 }. In practice, the supremum in LR% must be taken over a finite grid for 3,,
a 13-dimensional vector, and for each point in this grid one would have to calculate Bd (Ba) by concentrating
the likelihood over the 18-dimensioned vector B4. This is not a practical proposition given the complexity
of the model. The computational demands of the test in the case where S; = 2, and S5 = 3 are even larger.
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Model Comparisons

k Data One State Two States Three States
Mean  Std | Mean Std. | Mean Std. | Mean Std.

real

12 | 4.987 3.002 | 4.470 1.557 | 4.674 1.693 | 4.500 1.761

36 | 4.284 0.989 | 4.284 0.986 | 4.284 0.986 | 4.284 0.986

60 | 4.173 0.632 | 4.152 0.683 | 4.152 0.682 | 4.154 0.663

84 | 4.122 0.499 | 4.069 0.509 | 4.095 0.507 | 4.079 0.488
nominal

12 1 9.429 2.372 | 9.301 2.009 | 9.412 2.168 | 9.423 2.218

36 | 9474 1.781 | 9474 1.781 | 9.474 1.781 | 9.474 1.781

60 | 9.581 1.572 | 9.587 1.590 | 9.586 1.568 | 9.589 1.562

84 1 9.605 1.420 | 9.660 1.427 | 9.636 1.403 | 9.634 1.401

Note: The table reports sample statistics for real and nominal yields calculated

from the data, and the three models using the parameter estimates in Table2
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