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Abstract

We address whether transaction �ows in foreign exchange markets convey fundamental information. Our

GE model includes fundamental information that �rst manifests at the micro level and is not symmetrically

observed by all agents. This produces foreign exchange transactions that play a central role in information

aggregation, providing testable links between transaction �ows, exchange rates, and future fundamentals.

We test these links using data on all end-user currency trades received at Citibank over 6.5 years, a sample

su¢ ciently long to analyze real-time forecasts at the quarterly horizon. The predictions are borne out in

four empirical �ndings that de�ne this paper�s main contribution: (1) transaction �ows forecast future macro

variables such as output growth, money growth, and in�ation, (2) transaction �ows forecast these macro

variables signi�cantly better than the exchange rate does, (3) transaction �ows (proprietary) forecast future

exchange rates, and (4) the forecasted part of fundamentals is better at explaining exchange rates than

standard measured fundamentals.
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Introduction
Exchange rate movements at frequencies of one year or less remain unexplained by observable macro-

economic variables (Meese and Rogo¤ 1983, Frankel and Rose 1995, Cheung et al. 2005). In their survey,

Frankel and Rose (1995) describe evidence to date as indicating that "no model based on such standard fun-

damentals ... will ever succeed in explaining or predicting a high percentage of the variation in the exchange

rate, at least at short- or medium-term frequencies." Seven years later, Cheung et al.�s (2005) comprehensive

study concludes that "no model consistently outperforms a random walk."

This paper addresses this long-standing puzzle from a new direction. Rather than attempting to em-

pirically link macro variables to exchange rates directly, we address instead the intermediate market-based

process that impounds macro information into exchange rates. Our approach is based two central ideas:

First, only some of the macro information relevant for the current spot exchange rate is publicly known at

any point in time. Other information is present in the economy, but it exists in a dispersed microeconomic

form in the sense of Hayek (1945). The second idea relates to determination of the spot rate through the oper-

ation of the foreign exchange market. Speci�cally, since the spot rate literally is the price of foreign currency

quoted by foreign exchange dealers, it can only re�ect information that is known to dealers. Consequently,

the spot rate will only re�ect dispersed information once it has been assimilated by dealers, (collectively

called �the market�) �a process that takes place via trading. We shall argue that this trade-based mecha-

nism is economically important because much information about the current state is dispersed, and because

it takes a considerable time for dispersed information to be completely assimilated by �the market�.

To make these ideas concrete, we present a two-country general equilibrium model in which the spot

rate is determined via the optimal trading activities of dealers in the foreign exchange market. Our model

contains three essential ingredients. First, it includes information that is not publicly observed, at least

initially. Second, transaction �ows are correlated with this information. Third, the equilibrium spot rate is

not fully revealing. The model not only provides a theoretical rationale for the strong empirical link between

spot rate changes and transaction �ows (see, for example, Evans and Lyons 2002a,b), but it also delivers two

new testable implications: First, transaction �ows should have more power to forecast future fundamentals

than current spot rates. Second, insofar as the transaction �ows received by individual dealers predict what

the rest of �the market�will learn about fundamentals in the future, those �ows should have forecasting

power for future exchange rate returns.

We investigate these empirical predictions using a new data set that comprises USD/EUR spot rates,

transaction �ows and macro fundamentals over six and a half years. The transaction �ows come from

Citibank and represent propriety information of an important Bank in the USD/EUR market. A novel

and important feature of our empirical analysis is that it utilizes high-frequency real-time estimates of

macro variables. These data are estimates of the underlying macro variables based on contemporaneously

available public information. As such, they provide a more precise measure of public expectations regarding

fundamentals than realizations of the variables themselves. This greater precision is re�ected in the strong

statistical signi�cance of our �ndings.

The implications of our model are strongly supported by our data. In particular we �nd that:

1. Transaction �ows in the USD/EUR market have signi�cant forecasting power for future output growth,

money growth, and in�ation in both the US and Germany.

2. Transaction �ows have incremental forecasting power for macro variables beyond that contained in the
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history of exchange rates and the variable itself.

3. Propriety transaction �ows forecast future exchange rate returns, and do so much more e¤ectively than

forward discounts.

4. The forecasting power of propriety transaction �ows re�ects their ability to predict how �the market�

will react to the �ow of subsequent information concerning macro fundamentals.

To the best of our knowledge, these are the �rst �ndings to link macro fundamentals, transaction �ows and

exchange rate dynamics. Taken together, they provide strong support for the idea that exchange rates vary

as �the market�assimilates dispersed information regarding macro fundamentals from transaction �ows.

Our analysis is related to several strands of the international �nance literature. From a theoretical

perspective, our general equilibrium model includes two novel ingredients: dispersed information and a

micro-based rationale for trade in the foreign exchange market. Dispersed information does not exist in

textbook models: relevant information is either symmetric economy-wide, or, sometimes, asymmetrically

assigned to a single agent � the central bank. As a result, no textbook model predicts that market-wide

transaction �ows should drive exchange rates. In recent research, Bacchetta and van Wincoop (2006) examine

the dynamics of the exchange rate in a rational expectations model with dispersed information. Our model

shares some of the same informational features, but derives the equilibrium dynamics from the equilibrium

trading strategies of foreign exchange dealers. Our focus on the role of transaction �ows as conveyors of

information concerning macro fundamentals also di¤ers from Bacchetta and van Wincoop (2006).

From a empirical perspective, our analysis is closely related to the work of Engel and West (2005).

They �nd that spot rates have forecasting power for future macro fundamentals as textbook models predict.

Indeed, our model makes the same empirical prediction. The novel aspect of our analysis, relative to Engel

and West (2005), is that we investigate whether the exchange rate responds to transaction �ows because

they induce a change in �the market�s�expectations about future fundamentals. From this perspective, our

�ndings should be viewed as complementing theirs. Our analysis is also related to earlier research by Froot

and Ramadorai (2005), hereafter F&R. These authors examine VAR relationships between real exchange

rates, excess currency returns, real interest di¤erentials, and the transaction �ows of institutional investors.

In contrast to our results, they �nd little evidence that these �ow can forecast fundamentals. Our analysis

di¤ers from F&R in three respects. First, and most substantively, transaction �ows should be driven not by

changes in fundamentals, but by changes in fundamentals expectations. The F&R analysis focuses on the

former, whereas ours focuses on the latter. Second, we analyze transaction �ows which fully span the demand

for foreign currency, not just institutional investors. This facet of our �ow data proves to be empirically

important. Third, we require no assumption about exchange rate behavior in the long run, whereas the

variance decompositions F&R use are based on long run purchasing power parity.

The rest of the paper is organized as follows. Section 1 provides an overview of our model and presents the

key equations determining the spot exchange rate. Section 2 derives the theoretical link between transaction

�ows and exchange rate fundamentals. Section 3 describes the data. Section 4 presents our empirical analysis.

Section 5 concludes.
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1 The Model

Our model is a two-country, two-good dynamic general equilibrium model that incorporates explicit micro-

foundations of how trading takes place in the foreign exchange market. For this purpose, we need to model

the behavior of households, �rms, central banks and foreign exchange dealers who act as market-makers. In

this section, we �rst present the preferences and constraints facing households and �rms and describe the

role of central banks. We then lay out the problem facing foreign exchange dealers and provide intuition for

their equilibrium behavior. Finally we present the equilibrium equation for the spot exchange rate that plays

a central role in our analysis. The Appendix describes the complete structure of the model and provides

detailed mathematical derivations of our key results.

1.1 Households, Firms and Central Banks

There are two countries, each populated by a continuum of households arranged on the unit interval [0,1].

For concreteness, we shall refer to home and foreign countries as the US and Europe and use the index

h 2 [0; 1=2) to denote US households and ĥ 2 [1=2; 1] to denote European households. All households derive
utility from consumption and real balances. The preferences of US household h are given by:

Uht = Eht
1X
i=0

�i
�

1
1�
C

1�

h;t+i +

�
1�


�
Mh;t+i

Pt+i

�1�
�
; (1)

where 0 < � < 1 is the discount factor, � > 0 and 
 � 1. Eht denotes expectations conditioned on US
household information, 
h;t: Mh;t is the stock of dollars held by household h; and Ch;t is a CES consumption

index de�ned over the two consumption goods:

Ch;t � (Ch;t(us)(��1)=� + Ch;t(eu)(��1)=�)�=(��1); (2)

where Ch;t(i) is the consumption of the i-country good by household h: � is the elasticity of substitution

between the two goods, which we assume to be greater than one (see below). The price index corresponding

to (2) is Pt � (P us(1��)t + P
eu(1��)
t )1=(1��); where P it are the prices of good i. The preferences of European

households are de�ned in an analogous manner with respect to the foreign consumption index, Ĉh;t; and

real balances, M̂h;t=P̂t, where P̂t is the European price level. Hereafter, we use �hats�to indicate European

variables.

In addition to domestic currency, households can hold one-period nominal dollar bonds, B; nominal euro

bonds B̂; and the equities issued by US and European �rms, A and Â: Let Rt and R̂t be the US and European

one period gross nominal interest rates and let St denote the spot exchange rate, speci�cally, the dollar price

of euros ($/e). The budget constraint facing US household h is

Bh;t +QtAh;t + StB̂h;t + StQ̂tÂh;t +Mh;t + PtCh;t =

(Qt +Dt)Ah;t�1 + St(Q̂t + D̂t)Âh;t�1 +Rt�1Bh;t�1 + StR̂t�1B̂h;t�1 +Mh;t�1 (3)

where Qt and Q̂t are the local currency prices of US and European equities with dividends per share of Dt

and D̂t respectively. The problem facing US household h in period t is to choose Bh;t; B̂h;t; Âh;t; Ah;t;Mh;t;

and Ch;t(i) for i = fus, eug given prices fQt; Q̂t; P ust ; P eut g; dividends fDt; D̂tg; interest rates {Rt; R̂tg; and
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the spot exchange rate St; that maximize (1) subject to (3).

There are two representative �rms; a US �rm producing good Y; and a European �rm producing good Ŷ .

Each �rm has monopoly power in the US and European market for its good and issues equity claims to its

dividend stream. To introduce consumer price-stickiness, we assume that �rms set prices in local currencies

before they have complete information about the state of demand in each national market.

Consider the pricing problem facing the US �rm. The period�t output of the us good is Yt = �tK
�
t with

� > 0; where Kt and �t denote the current stock of �rm-speci�c capital and the state of productivity. This

output can be costlessly transported to meet demand in the US and European market or used to augment

the existing capital stock. Let P ust and P̂ ust denote the period�t dollar and euro retail prices for the us
good. Given the form of household preferences, the US and European demands for the us good are given

by (P ust =Pt)
��Ct and (P̂ ust =P̂t)

��Ĉt where Ct and Ĉt denote aggregate US and European consumption. We

assume that prices are chosen to maximize the real value of the �rm�s dividend stream. If the total number

of outstanding shares is normalized to unity, the pricing problem facing the US �rm is

Qust = max
P us
t ;P̂

us
t

Eust
1X
i=0

�t+i;t(Dt+i=Pt+i) (4)

subject to Dt=Pt = (P ust =Pt)
1��Ct + (StP̂t=Pt)(P̂

us
t =P̂t)

1��Ĉt; and (5)

Kt+1 = (1� %)Kt + �tK
�
t � (P ust =Pt)��Ct � (P̂ ust =P̂t)��Ĉt: (6)

where Eust denotes the �rm�s expectations conditioned period-t information. �t+i;t is the stochastic discount

factor between t and t+i that the �rm uses to value the stream of real dividends. Firms cannot hold �nancial

assets or claims, so real dividends, Dt=Pt; must equal the the sum of US and European sales measured in

terms of US aggregate consumption as shown in (5). Equation (6) describes capital accumulation with

depreciation rate % > 0:2 Notice that the �rm faces three (potential) sources of uncertainty when choosing

period�t prices: uncertainty about aggregate consumption, Ct and Ĉt; the aggregate price levels, Pt and P̂t;
and the spot exchange rate, St: The European �rm producing the eu good faces an analogous problem in

choosing prices, P eut and P̂ eut :

The Federal Reserve (FED) and European Central Bank (ECB) play a simple role in our model. Both

central banks set one period nominal interest rates so as to achieve a target level for their national money

supplies. Speci�cally, we assume that Rt and R̂t are set at the beginning of period t such that

m�
t = Efedt mt; and m̂�

t = Eecbt m̂t

where mt �
R 1=2
0

lnMh;tdh and m̂t �
R 1
1=2
ln M̂h;tdh are the aggregate log demands for dollars and euros and

m�
t and m̂

�
t denote the targets for the US and European log money supplies. (Hereafter we denote aggregates

by dropping the h subscript and use lowercase variables to denote natural logs, e.g. st = lnSt, ch;t � lnCh;t;
etc.). Notice that interest rates are set on the basis of the FED�s and ECB�s expectations concerning the

demand for currency, Efedt mt and Eecbt m̂t; rather than the actual demand. Insofar as central banks are

unable to exactly predict the aggregate demand for currency, because individual household demands are a

function of private information, excess demand is accommodated at the chosen interest rates.

2The �rm�s problem is not well-posed if the elasticity parameter � is less than one because real dividends and future capital
would be increasing functions of current relative prices.
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1.2 Foreign Exchange Dealers

A key distinction between our model and traditional international �nance models is that the spot exchange

rate is determined as the foreign currency price quoted by dealers in the foreign exchange market. We assume

that there are d dealers (indexed by d) who act as market-makers in the spot market for foreign currency.

As such, each dealer quotes prices at which they stand ready to buy or sell foreign currency to households

and other dealers.3 Each dealer also has the opportunity to initiate transactions with other dealers at the

prices they quote. We now described the decision problem facing a typical dealer in detail.

For simplicity, we assume that all dealers are located in the US. The preferences of dealer d are given by:

Udt � Edt
1X
i=0

�i 1
1�
C

1�

d;t+i; (7)

where Edt denotes expectations conditioned on the dealer�s period�t information, 
d;t, and Cd;t represents
the dealers consumption of the 2 goods aggregated via the CES function shown in (2). Dealers have the same

preferences as US households except that real balances have no utility value. As a consequence, they will

not hold currency in equilibrium �a feature that proves useful in the deriving equations for the equilibrium

exchange rate below. We assume that dealers are prohibited from holding equities for the same reason.

Trading in period t is split into two rounds. In round i, dealers quote prices at which they are willing

to trade with households. In round ii, dealers quote prices at which they will trade with other dealers and

they initiate trades against other dealer�s quotes. More speci�cally, at the start of round i, each dealer d

quotes a dollar price for euros, Sid;t; at which he is willing to buy or sell euros. These price quotes are

publicly observed and good for any quantity of euro (i.e. there is no bid-ask spread). Each dealer then

receives orders for euros from a subset of households. We denote the net household order to purchase euros

received by dealer d as T id;t: Household orders are only observed by the recipient dealer and so represent a
source of private information. At the start of round ii, each dealer quotes a price for euros of Siid;t: These

prices, too, are good for any quantity and publicly observed, so that trading with multiple partners (e.g.,

arbitrage trades) is feasible. Each dealer d then chooses the quantity of euros he wishes to purchase, Td;t;

(negative values for sales) by initiating a trade with other dealers. Interdealer trading is simultaneous and,

to the extent trades are desired at a quote that is posted by multiple dealers, those trades are divided equally

among dealers posting that quote. We denote the net quantity of euros purchased from dealer d as a result of

the trades initiated by other dealers by T iid;t: After round ii trading is complete, dealers make their period-t
consumption decisions.

Let Bid;t and B̂
i
d;t denote dealer d

0s holdings of dollar and euro bonds at the start of round i trading in

period t: At the end of round i trading, the dealer�s bond holdings are

Biid;t = Bid;t + S
i
d;tT id;t; and B̂iid;t = Bid;t � T id;t; (8)

where Sid;t is the price quoted by dealer d; and T id;t are the incoming household orders to purchase euros. In
round ii, dealer d quotes Siid;t; receives incoming order for euros of T iid;t and initiates euro purchases of Td;t
at the price of Siit ; the price quoted by other dealers. (In equilibrium all dealers quote the same price so

3More precisely, the price dealers quote is for the euro bond, which can be thought of as an interest-baring euro deposit
account.
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we need not worry about the identity of the other dealers.) To �nance his desired basket of consumption

goods, dealer d then exchanges US bonds worth PtCd;t for dollars at the US central bank, and makes his

consumption purchases in the US markets for the two goods. The dealer�s bond holdings at the start of

period t+ 1 are therefore given by

B̂id;t+1 = R̂t(B̂
ii
d;t + Td;t � T iid;t); and

Bid;t+1 = Rt(B
ii
d;t + S

ii
d;tT iid;t � Siit Td;t � PtCd;t): (9)

The problem facing dealer d at the start of round i is to choose the price quote, Sid;t; that maximizes

Udt based on current information, 
id;t; subject to (8) and (9). By assumption, all dealers choose quotes
simultaneously, so the choice of Sid;t cannot be conditioned on the quotes of other dealers, i.e., S

i
n;t for

n 6= d: At the start of round ii, dealer d faces the analogous problem of choosing Siid;t that maximizes

Udt based on 
iid;t; subject to (9). After all the dealers have quoted their round ii prices, dealer d must
determine his interdealer euro order, Td;t, to maximize Udt based on 
iid;t and fSiid;tgDd=1 subject to (9). Once
again, the choice of Td;t cannot be conditioned on incoming euro orders from other dealers, T iid;t; because
interdealer trading takes place simultaneously. After round ii trading is complete, dealer d then chooses his

consumption of the US and EU goods, Cd;t(us) and Cd;t(eu), to maximize Udt based on current information
and the sequence of future constraints in (8) and (9).

1.3 The Equilibrium Exchange Rate

An equilibrium in this model is described by a set of: (i) market-clearing equity prices, (ii) consumption and

portfolio rules that maximize the expected utility of households, (iii) local currency pricing rules for �rms that

maximize the value of their dividend streams, (iv) optimizing quote, trade and consumption rules for dealers,

and (v) interest rates consistent with both central banks monetary targets. To characterize this equilibrium,

we need to specify how market clearing is achieved in the equity markets and how the information used in

decision-making di¤ers across agents. For this purpose, we make the following assumptions:

A1 Households within each county have the same information.

A2 Households cannot hold the equity issued by foreign �rms.

Assumption A1 rules out intranational di¤erences in the information available to individual households.

It does not rule out di¤erences between the information available to dealers, and households, or between

households in di¤erent countries. We use the index h and bh to identify a representative US and European
household and denote their common information sets at the start of period t by 
ht ; and 


bh
t respectively.

With this simpli�cation, we can use the currency orders of representative US and European households to

describe how information concerning the macroeconomy is transmitted to the exchange rate. Trade in the

equity markets is ruled out by A1 and A2. Taken together, these assumptions imply that all the equities

issued by US and European �rms are held the domestic representative household.4 As a result, the market

clearing real price of US equity, Qt=Pt; must equal the value of Qust � Dt=Pt under an optimal period�t

4Obviously, this implication of A1 and A2 is at odds with the degree of international �nancial integration we observe in
world equity markets. We use it here to avoid having to model market-making activity in both currency and equity markets �
an extension we leave for future research.
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pricing policy where �t+i;t is the discount factor of US households.5 The market clearing price of European

equity, Q̂t=P̂t; is analogously identi�ed from the solution to the European �rm�s pricing problem. Notice

that all other goods and asset prices are set by either �rms, central banks or dealers.

Let us now focus on the determination of the equilibrium exchange rate. For this purpose we must

consider the optimal choice of dealers�quotes in the two rounds of trading. As in Lyons (1997), our trading

environment constitutes a game played over two trading rounds each period by the d dealers. As such,

we identify optimal dealer quotes and trades by the Perfect Bayesian Equilibrium (PBE) strategies. The

resulting quotes for dealer d are given by

Sid;t = Siid;t = St = F(
dt ); (10)

where 
dt = \d
id;t is the information set common to all dealers at the beginning of round i in period t:
Equation (10) shows that optimal quotes have three features: First, each dealer quotes the same prices

in rounds i and ii. Second, quotes are common across all dealers. Third, all quotes are a function, F(:);
of common information at the start of period t; 
dt : The intuition behind these features is straightforward:

Recall that round ii quotes are available to all dealers, are good for any amounts, and that each dealer can

initiate trades with multiple counterparties. Under these conditions, any dealer quoting a di¤erent price

from Siit would expose himself to arbitrage. A similar argument applies to the round i quotes. Again, these

quotes are publicly observed and households are free to place orders with several dealers. Consequently, all

dealers must quote the same prices to avoid arbitrage trading losses. Dealers must also have an incentive

to �ll their share of incoming orders at the quoted common price (i.e., they must be willing to participate

in round i). This rules out di¤erences between the round i and round ii common quote. Finally, recall that

quotes must be chosen simultaneously at the beginning of each trading round. As such, round i quotes will

only be common across all dealers if they depend on common dealer information, 
dt : Dealers may posses

private information at the start of period t, but they cannot use it in their choice of quote without exposing

themselves to arbitrage losses.

The relationship between the common period�t quote, St, and dealers�common information, 
dt ; implied
by the PBE of our model is identi�ed in the following proposition:

Proposition 1 The log spot rate implied by the PBE quote strategies of dealers in period t is

st =
�

1
1+�

�
Edt

1X
i=0

�
�
1+�

�i
ft+i; (11)

where � is a positive constant and Edt denotes expectations conditioned on dealers�common period-t infor-
mation, 
dt : ft denotes exchange rate fundamentals, which are de�ned as

ft � ĉt � ct +m�
t � m̂�

t + "t � � (12)

where "t � ln(StP̂t=Pt) is the log real exchange rate and  is a risk premium.

The Appendix provides a detailed derivation of these equations from the log linearized equilibrium condi-

5Note that Qt=Pt is the ex-dividend real price of us equity in period t; while Qust is the period�t present value of current
and future real dividends valued using the us household�s stochastic discount factor. Hence Qust = Qt=Pt +Dt=Pt:
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tions as well as the results reported in the propositions that follow. Here, we provide some intuition. In the

equilibrium of our model, dealers must be willing to �ll incoming orders for euros at the price they quote.

This means that the period-t quote must be set such that the expected excess return on euros between t

and t + 1 compensates the dealers for the risk of �lling incoming currency orders during period t: In other

words, all dealers must quote a price, St � exp(st); such that

Edt�st+1 + r̂t � rt =  ; (13)

where �st+1 � st+1 � st and  is the risk premium that depends on the conditional second moments of

dealers�marginal utility of wealth and the future spot rate:6 Notice that Edt�st+1 + r̂t � rt will di¤er from

the expectations of (log) excess returns held by an individual dealer d when he has private information about

the future spot rate (i.e., Edt st+1 6= Edt st+1): Individual dealers use this private information when making the
round ii trading decisions, not when choosing St. Proposition 1 follows easily from (13) and the implications

of money market clearing. In particular, our speci�cation for household preferences implies that the expected

demand for dollars conditioned on 
dt is approximately Edtmt = $ + pt + Edt ct � �rt: The expected demand
for euros is similarly approximated by Edt m̂t = $ + p̂t + Edt ĉt � �r̂t: Under the reasonable assumption that

central banks expectations concerning aggregate money demand are at least as precise as expectations based

on 
dt ; Edtmt = Edtm�
t and Edt m̂t = Edt m̂�

t by the law of iterated expectations. Combining these expressions

with (13) gives us the equations in Proposition 1.

Equation (11) plays a central role in our analysis. It shows that the log price of euros quoted by all

dealers is equal to the present value of fundamentals, ft: There are two noteworthy di¤erences between this

speci�cation and the exchange rate equations found in traditional monetary models. First, the de�nition of

fundamentals in (12) includes the di¤erence between foreign and home consumption rather than income. This

arises because household preferences imply that the demand for national currencies depends on consumption

rather than income. Second, equation (11) shows that fundamentals a¤ect the spot rate only via dealers�

expectations. This is a particularly important feature of the model: Since the current spot rate is simply

the common price of euros quoted by dealers before trading starts, it must only be a function of information

that is common to all dealers at the time, 
dt . This means that exchange rate dynamics in our model are

driven by the evolution of dealers�common information.

To further emphasize the importance of dealers�information, it is useful to consider the implications of

(11) for the rate of depreciation, �st+1. Speci�cally, if we iterate (11) forward to get st = Edt ft+ �Edt�st+1;
and rearrange, we can write the depreciation rate implied by the PBE quotes as

�st+1 =
1
� (st � E

d
t ft) + et+1; (14)

where et+1 � 1
1+�

X1

i=0

�
�
1+�

�i
(Edt+1 � Edt )ft+i+1: (15)

Equation (14) shows that the evolution of dealers�information can a¤ect the depreciation rate through two

channels: First, it can a¤ect the di¤erence between the current spot rate and dealers�estimate of current

fundamentals, st � Edt ft. Second, it can lead to revisions in dealers�common knowledge forecasts of future
fundamentals, (Edt+1 � Edt )ft+i+1 for i � 0; which as (15) shows, contribute to dealer errors in forecasting

6For the sake of clarity, we shall take this risk premium to be constant in the analysis that follows. Allowing for time-variation
does not a¤ect the focus of our analysis.
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next period�s spot rate, et+1 � st+1 � Edt st+1: Since the �rst term in (14) is multiplied by the reciprocal of

the semi-interest elasticity of money demand, 1=�; a small number, the second channel is more likely to be

empirically relevant. Indeed, because depreciation rates are very hard to forecast over short time periods,

any attempt to make progress on understanding the origins of high-frequency spot rate dynamics must focus

on the second channel.7 This is exactly the strategy of this paper. Speci�cally, our aim is to investigate

whether transaction �ows in the foreign exchange market convey information about fundamentals to dealers

that they then incorporate into their price quotes. In other words, we ask: Do transaction �ows act as a

proximate driver of spot exchange rates because they convey information that leads to revisions in dealers�

forecasts of fundamentals, (Edt+1 � Edt )ft+i+1?
Before we address this question in detail, it proves useful to have an overview of how information contained

in customer orders becomes incorporated into the equilibrium spot rate. Recall that the customer orders

received by each dealer d; T id;t; represent private information to the dealer. In our model, the PBE strategy
for each dealer is to use this information when initiating trades with other dealers (i.e., when choosing Td;t).

As a result, interdealer trading in round ii e¤ectively aggregates the information contained in customer

orders received by dealers across the market. Indeed, it is the information conveyed by interdealer trading

that augments dealer�s common information by the start of period t + 1; and hence a¤ects dealers�PBE

choice for st+1. This does not mean that dealers necessarily have complete information about the current

fundamentals by the end of interdealer trading. As the model of Evans and Lyons (2004) shows, they will

under some special circumstances, but in general the inference problem facing dealers is too complex for

them to make precise inferences about current fundamentals from their observations of interdealer trading.

We will have more to say about dealers�assimilation of information below.

Finally, a few comments about the structure of the model are in order. Our speci�cation for the household

and production sectors deliberately does not include many of the features to be found in recent two-country

general equilibrium models. Our aim, instead, is to present a minimal speci�cation that provides microfoun-

dations for the key macroeconomic factors that a¤ect the behavior of the spot exchange rate. These are:

(i) household demands for foreign currency motivated by optimal portfolio choice, and (ii) pricing decisions

by �rms that imply variations in the real exchange rate. While richer speci�cations for preferences and the

production sector would clearly improve the empirical relevance of the model along many dimensions, they

would not qualitatively a¤ect the links between exchange rates, fundamentals and transaction �ows which

are the focus of this paper.

2 Fundamentals and Order Flow

We now examine the link between transaction �ows, fundamentals and the spot exchange rate. More

speci�cally, our aim is to identify the conditions under which the customer order �ows reaching dealers, T id;t;
convey new information about fundamentals that dealers incorporate into their price quotes for euros. We

proceed in two steps. First we identify the factors driving customer order �ows. Second, we show why order

�ows may convey information about fundamentals.

7This point holds outside the context of our speci�c model. Engel and West (2005) note that forecasting the depreciation
rate implied by several standard models will be hard because the value of the � coe¢ cient in the present value representation
of the equilibrium exchange rate is very large. Thus, the lack of forecastability does not, in itself, imply that spot exchange
rates are disconnected from fundamentals (see, also, Evans and Lyons 2005).
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2.1 Customer Order Flow

Let xt denote aggregate customer order �ow de�ned as the dollar value of aggregate household purchases

of euros from dealers during period t trading. The contribution of US households to this order �ow is

St(B̂h;t � B̂h;t�1) = �tWh;tR̂t � StB̂h;t�1 where �t denotes the desired share of euro bonds in the US

households�wealth. Similarly, European households contribute St(B̂bh;t � B̂bh;t�1) = �̂tStŴbh;tR̂t � StB̂bh;t�1
where �̂t is the desired share of euro bonds in European wealth. Market clearing requires that aggregate

holdings of euro bonds by households and non-households (i.e., central banks and dealers) sum to zero, so

that B̂t�1+B̂bh;t�1+B̂bh;t�1 = 0 where B̂ denotes the aggregate holdings of non-households. Hence, aggregate
order �ow can be written as

xt = [�t`t + �̂t (1� `t)]WtR̂t + StB̂t�1; (16)

where Wt �Wh,t+StŴbh;t is world household wealth in dollars, and `t �Wh,t=Wt: Thus, order �ow depends

upon the portfolio allocation decisions of US and European households (via �t; and �̂t), the level and

international distribution of household wealth (via Wt and `t) and the outstanding stock of foreign bonds

held by non-households from last period�s trading, B̂t�1: These elements imply that order �ow contains

both pre-determined (backward-looking) and non-predetermined (forward-looking) components. The former

include the level and distribution of wealth, the latter are given by the portfolio shares because they depend

on households�forecasts of future returns. We formalize these observations in the following proposition.

Proposition 2 The utility-maximizing choice of portfolios by US and European households implies that

aggregate order �ow may be approximated by

xt = �rEht st+1 + �̂rE
bh
t st+1 + ot; (17)

with �; �̂ > 0; where rE!t st+1 � E!t st+1 � Edt st+1 for ! = fh,bhg and ot denotes terms involving the

distribution of wealth, non-household bond holdings, and the consumption of European households.

Equation (17) describes the second important implication of our model. It relates order �ow to the

di¤erence between households�forecasts for the future spot rate, E!t st+1 for ! = fh,bhg; and dealers�forecasts,
Edt st+1: In particular, there will be positive order �ow for euros if households are more optimistic about the

future value of the euro than dealers, so that rE!t st+1 > 0 for ! = fh,bhg:
To understand why di¤erences in expectations play this role, we need to focus on how households choose

their portfolios. In the appendix we show that the optimal share of US household wealth held in the form

of euro bonds is increasing in the expected log excess return, Eht�st+1 + r̂t � rt: Now, when dealers�foreign
currency quotes satisfy (11) and (12), the log spot rate also satis�es Edt�st+1+ r̂t�rt =  :We can therefore

write the excess return on European bonds expected by US households as

Eht�st+1 + r̂t � rt = Edt�st+1 + r̂t � rt +rEht st+1 = rEht st+1 +  :

Thus, when US households are more optimistic about the future value of the euro than dealers, they expect

a higher excess return on euro bonds. These expectations, in turn, increase the desired fraction of US

household wealth in euro bonds, so US households place more orders for euros with dealers in round i of

period�t trading. Optimism concerning the value of the euro on the part of European households (i.e.

rEbht st+1 > 0) contributes positively to order �ow in a similar manner.
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Of course household portfolio choices are also a¤ected by risk. The ot variable in (17) summarizes the

e¤ects of risk, the distribution of wealth and non-household bond holdings. These terms will not vary

signi�cantly from month to month or quarter to quarter under most circumstances, and so will not be the

prime focus of the analysis below. We shall concentrate instead on how the existence of dispersed information,

manifest through the existence of the forecast di¤erentials, rEht st+1 and rEbht st+1; a¤ects the joint behavior
of order �ow, spot rates and fundamentals.

2.2 How is Order Flow Related to Fundamentals?

To address this question, we �rst characterize the equilibrium dynamics of fundamentals. Let yt denote the

vector that describes the state of the economy at the start of period t: This vector includes the variables

that comprise fundamentals (i.e. consumption, money targets and the real exchange rate) as well as those

variables needed to describe �rms�behavior, and the distribution of wealth across households and dealers. In

Evans and Lyons (2004), we describe in detail the equilibrium dynamics of a model with a similar structure.

Here our focus is on the empirical implications of the model, so we present the equilibrium dynamics in

reduced form:

�yt+1 = A�yt + ut+1; (18)

where �yt � yt � yt�1 with ut+1 a vector of mean zero shocks. This speci�cation for the equilibrium

dynamics of the state variables is completely general, yet it allows us to examine the link between order �ow

and fundamentals in a straightforward way.

We start with the behavior of the spot exchange rate. Let fundamentals be a linear combination of the

elements in the state vector: ft = Cyt: When dealers quote spot rates according to (11) in Proposition 1,

and (18) describes the dynamics of the state vector yt; the spot exchange rate can be written as

st = �Edt yt; (19)

where y0t � [y0t;�y
0
t] and � � C{1 +

�
1+�C(I �

�
1+�A)

�1A{2, with yt = {1yt and �yt = {2yt: � is a vector

that relates the log spot rate to dealers�current estimate of the state vector yt: We can now write the US

forecast di¤erential as:

rEht st+1 = �
�
EhtEdt+1yt+1 � EdtEdt+1yt+1

�
= �

�
EhtEdt+1yt+1 � Edt yt+1

�
: (20)

Suppose that US households collectively know as much about the state of the economy as dealers do.

Under these circumstances, the right hand side of (20) is equal to �Eht
�
Edt+1 � Edt

�
yt+1: In other words, the

forecast di¤erential for the future spot rate depends on households�expectations regarding how dealers revise

their estimates of the future state, yt+1: As one might expect, this di¤erence depends on the information sets,


ht and 

d
t : Clearly, if 


h
t = 


d
t ; then Eht (Edt+1�Edt )yt+1 must equal a vector of zeros because (Edt+1�Edt )yt+1

must be a function of information that is not in 
dt : Alternatively, suppose that households collectively have

superior information so that 
ht = f
dt ; �tg for some vector of variables �t: If dealers update their estimates
of yt+1 using elements of �t, then some elements of (Edt+1 � Edt )yt+1 will be forecastable based on 
ht :
We formalize these ideas in the following proposition.
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Proposition 3 If US and European households are as well-informed about the state of the economy as

dealers, so that 
dt � 
ht and 
dt � 
bht ; then US and European forecast di¤erentials for spot rates are
rEht st+1 = ��(Ehtyt+1 � Edt yt+1); (21a)

rEbht st+1 = ��̂(Ebhtyt+1 � Edt yt+1); (21b)

and order �ow follows

xt = ���rEhtyt+1 + �̂��̂rE
bh
tyt+1 + ot: (22)

for some matrices, � and �̂:

The intuition behind Proposition 3 is straightforward. If US households are collectively as well-informed

about the future state of the economy as dealers, then rEht st+1 = �Eht (Edt+1�Edt )yt+1; so the forecast di¤er-
ential depends on the speed at which US household expect dealers to assimilate new information concerning

the future state of the economy. We term this the pace of information aggregation. If dealers learn nothing

new about yt+1 during period�t trading, Edt+1yt+1 = Edt yt+1: Hence, if US households expect that period�t
trading will reveal nothing new to dealers, Eht

�
Edt+1 � Edt

�
yt+1 = 0 and there is no di¤erence between dealer

and household forecasts of future spot rates. Under these circumstances, there is no information aggregation

so � and �̂ are equal to null matrices. Alternatively, if households expect dealers to assimilate information

from period�t trading, the forecast di¤erentials for spot rates will be non-zero. In the extreme case where
period-t trading is su¢ ciently informative to reveal to dealers all that households know about the future

state of the economy, (Edt+1 � Edt )yt+1will equal E!t yt+1 � Edt yt+1 for ! = fh,bhg: In this case, information
aggregates quickly, so � and �̂ equal the identity matrices. Under other circumstances where the pace of in-

formation aggregation is slower, the � and �̂ matrices will have many non-zero elements. (Exact expressions

for � and �̂ are provided in the Appendix.)

Equation (22) combines (17) from Proposition 2 with (21). This equation expresses order �ow in terms

of forecast di¤erentials for the future state of the economy and the speed of information aggregation. Since

fundamentals represent a combination of the elements in yt; (22) also serves to link dispersed information

regarding future fundamentals to order �ow. In particular, if households have more information about the

future course of fundamentals than dealers, and dealers are expected to assimilate at least some of this

information from transaction �ows each period, order �ow will be correlated with variations in the forecast

di¤erentials for fundamentals.

We should emphasize that the household currency orders driving order �ow in this model are driven solely

by the desire to optimally adjust portfolios. Households have no desire to inform dealers about the future

state of the economy, so the information conveyed to dealers via transaction �ows occur as a by-product of

their dynamic portfolio allocation decisions. The transaction �ows associated with these decisions establish

the link between order �ow, dispersed information, and the speed of information shown in equation (22).

One aspect of our model deserves further clari�cation. Our model abstracts from informational hetero-

geneity at the household level, so 
ht ; and 

bh
t represent the information sets of the representative US and

European households. This means that the results in Proposition 3 are derived under the assumption that

representative households have strictly more information than dealers (
dt � 
ht and 
dt � 
bht ): Clearly this
is a strong assumption. Taken literally, it implies that every household knows more about the current and

future state of the economy than any given dealer. Fortunately, our central results do not rely on this literal

interpretation. To see why, suppose, for example, that each household receives its own money demand shock
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and is thereby privately motived to trade foreign exchange. In this setting, no household would consider

itself to have superior information. But the aggregate of those realized household trades would in fact convey

information about the average household shock, i.e., the state of the macroeconomy. For the sake of parsi-

mony, we have not modelled heterogeneity at the US and European household levels. Instead, we assume

that households in any given country share the same information about the macroeconomy. Extending the

model to capture heterogeneity is a natural extension, but not one that would alter the main implications

of our model that are the focus of the empirical analysis below.8

3 Data

Our empirical analysis utilizes a new data set that comprises end-user transaction �ows, spot rates and

macro fundamentals over six and a half years. The transaction �ow data di¤ers in two important respects

from the data used in earlier work (e.g., Evans and Lyons 2002a,b). First, they cover a much longer time

period; January 1993 to June 1999. Second, they come from transactions between end-users and a large

bank, rather than from inter-bank transactions. Our data covers transactions with three end-user segments:

non-�nancial corporations, investors (such as mutual funds and pension funds), and leveraged traders (such

as hedge funds and proprietary traders). The data set also contains information on trading location. From

this we construct order �ows for six segments: trades executed in the US and non-US for non-�nancial

�rms, investors, and leveraged traders. Though inter-bank transactions account for about two-thirds of total

volume in major currency markets at the time, they are largely derivative of the underlying shifts in end-user

currency demands. Our data include all the end-user trades with Citibank in the largest spot market, the

USD/EUR market, and the USD/EUR forward market.9 Citibank had the largest share of the end-user

market in these currencies at the time, ranging between 10 and 15 percent. The �ow data are aggregated at

the daily frequency and measure in $m the imbalance between end-user orders to purchase and sell euros.

There are many advantages of our transaction �ow data. First, the data are simply more powerful,

covering a much longer time span. Second, because the underlying trades re�ect the world economy�s

primitive currency demands, the data provide a bridge to modern macro analysis. Third, the three segments

span the full set of underlying demand types. We shall see that those not covered by extant end-user data

sets are empirically important for exchange rate determination.10 Fourth, because the data are disaggregated

into segments, we can address whether the behavior of the individual segments is similar, and whether they

convey the same information concerning exchange rates and macro fundamentals.

Our empirical analysis also utilizes new high-frequency real-time estimates of macro variables for the US

and Germany: speci�cally GDP, consumer prices, and M1 money. As the name implies, a real-time estimate

of a variable is the estimated value based on public information available on a particular date. These

estimates are conceptually distinct from the values that make up standard macro time-series. Importantly,

because they are computed from information available to market participants contemporaneously, real-time

8As is standard in literature, we use �households�as a metaphor for a wide class of agents that constitute the private sector.
In particular, households represent the class of non-dealer agents that observe some component of macro fundamentals. One
way to introduce heterogeneity would be to di¤erential between the information available to di¤erent members of this class,
e.g., �nancial institutions and individuals.

9Before January 1999, data for the Euro are synthesized from data in the underlying markets against the Dollar, using
weights of the underlying currencies in the Euro.
10Froot and Ramadorai (2002), consider the transactions �ows associated with portfolio changes undertaken by institutional

investors. Osler (2003) examines end-user stop-loss orders.
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estimates are relevant for understanding the link between the foreign exchange market (or any other �nancial

market) and the macroeconomy.

A simple example clari�es the di¤erence between a real-time estimate of a macro variable and the data

series usually employed in empirical studies. Let { denote a variable representing macroeconomic activity
during month � ; that ends on day m(�), with value {m(�). Data on the value of { is released on day r(�)
after the end of month � with a reporting lag of r(�)�m(�) days. Reporting lags vary from month to month
because data is collected on a calendar basis, but releases issued by statistical agencies are not made on

holidays and weekends. (For quarterly series, such as GDP, reporting lags can be as long as several months.)

The real-time estimate of { on day t in month � is the expected value of {m(�) based on day�t information:
Formally, the real-time estimate of a monthly series { is

{m(�)jt � E[{m(�)j
t] for m(� � 1) < t � m(�); (23)

where 
t denotes an information set that only contains data known at the start of day t: In the case of a

quarterly series like GDP, the real-time estimate on day t is

{q(i)jt � E[{q(i)j
t] for q(i� 1) < t � q(i); (24)

where q(i) denotes the last day of quarter i:

Real-time estimates are conceptually distinct from the values for {m(�) or {q(i) found in standard macro
time series. To see why, let v(�) denote the last day on which data on { for month � was revised. A standard
monthly time series for variable { spanning months � = 1; ::T comprises the sequence {{m(�)jv(�)gT�=1.11 This
latest vintage of the data series incorporates information about the value of { that was not known during
month � . We can see this more clearly by writing the di¤erence between {m(�)jv(�) and real-time estimate as

{m(�)jv(�) � {m(�)jt =
�
{m(�)jv(�) � {m(�)jr(�)

�
+
�
{m(�)jr(�) � {m(�)jm(�)

�
+
�
{m(�)jm(�) � {m(�)jt

�
: (25)

The �rst term on the right hand side represents the e¤ects of data revisions following the initial data release.

We denote the value for {m(�) released on day r(�) by {m(�)jr(�) so {m(�)jv(�) � {m(�)jr(�) identi�es the
e¤ects of all the data revisions between r(�) and v(�): Croushore and Stark (2001), Faust, Rogers, and

Wright (2003) and others have emphasized that these revisions are signi�cant for many series. The second

term in (25) is the di¤erence between the value for {m(�) released on day r(�) and the real-time estimate
of {m(�) at the end of the month. This term identi�es the impact of information concerning {m(�) collected
by the statistical agency before the release date that was not part of the 
m(�) information set. This term

is particularly important in the case of quarterly data where the reporting lag can be several months. The

third term on the right of (25) is the di¤erence between the real time estimate of {m(�) at the end of month
� and the estimate on a day earlier in the month.

In this paper we construct real time estimates of GDP, consumer prices, and M1 for the US and Germany

using an information set based on 35 macro data series. For the US estimates our speci�cation for 
t includes

the 3 quarterly releases on US GDP and the monthly releases on 18 other US macro variables. The German

11For the sake of notational clarity, we have implicitly assumed that the statistical agency uses the 
t information set when
computing data revisions. Relaxing this assumption to give the agency superior information does not a¤ect the substance of
our argument. For a further discussion, see Evans (2005).
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real-time estimates are computed using a speci�cation for 
t that includes the 3 quarterly release on German

GDP and the monthly releases on 8 German macro variables. All series come from a database maintained

by Money Market News Services that contains details of each data release. We use the method developed in

Evans (2005) to compute the real-time estimates. Specially, for each variable { we use the Kalman Filter to
calculate the conditional expectations in (23) and (24) from estimates of a state space model that speci�es

a daily time series process for {t and its relation to the sequence of data releases (i.e. the elements of 
t):
The Appendix provides an overview of the state space model and the estimation method.

Our real time estimates have several important attributes. First our speci�cation insures that the infor-

mation set used to compute each real-time estimate, 
t; is subset of the information available to participants

in the foreign exchange market on day t: This means that the real-time estimate of monthly variable {;
{m(�)jt; can be legitimately used as a variable a¤ecting market actively on day t: By contrast, the values for
{m(�) found in either the �rst or �nal vintage of a time series (i.e., {m(�)jr(�) or {m(�)jv(�)) contain information
that was not known to participants on day t:

The second attribute of the real-time estimates concerns the frequency with which macro data is collected

and released. Even though the macro variables are computed on a quarterly (GDP) or monthly (prices

and money) basis, real-time estimates vary day-by-day as the �ow of macro data releases augments the

information set 
t: This attribute is illustrated in Figure 1, where we plot the real-time estimates of log

GDP for the US and Germany. The real-time estimates (shown by the solid plots) clearly display a much

greater degree of volatility than the cumulant of the data releases (shown by the dashed plots). This

volatility re�ects how inferences about current GDP change as information arrives in the form of monthly

data releases during the current quarter and GDP releases referring to the previous quarter. A further

noteworthy feature of Figure 1 concerns the di¤erence between the real-time estimates and the ex post value

of log GDP represented by the vertical gap be the solid and dashed plots. This gap should be small if the

current level of GDP could be precisely inferred from contemporaneously available information. However, as

the �gure clearly shows, there are many occasions where the real-time estimates are substantially di¤erent

from the ex post values.

Figure 1: Real-time estimates of log GDP (solid line) and cumulant of GDP releases (dashed line). The
right hand panel shows plots for US GDP, the left panel plots for German GDP. All series are detrended
and multiplied by 100.
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A third attribute of the real-time estimates concerns their variation over our sample period. Although

our data covers only six and a half years, Figure 1 shows that there is considerable variation in our GDP

measures within this relatively short time span. The vertical axis shows that real-time estimates of US GDP

have a range of approximately 2.4 percent around trend, while the range for German GDP is more than 4.5

percent.

Figure 2 displays the variation in the other real-time estimates. The left hand panel shows that while

the real-time estimates of US prices varied very little from their trend, German prices varied by almost 3

percent. In the right hand panel the real-time estimates for M1 have a range of almost 16 percent in the US

and 7 percent in Germany. Because the reporting lag for both prices and money are much shorter than that

for GDP, the di¤erences between these real-time estimates and the ex-post values are much smaller than

those shown in Figure 1. (We omit ex-post values from Figure 2 for clarity.) Real-time uncertainty about

current consumer prices and M1 is far less than the degree of uncertainty surrounding GDP.

In sum, all but one of the real-time estimates varies signi�cantly over our sample period. This is important

if we want to study how macroeconomic conditions a¤ect the foreign exchange market. If all of our real-time

estimates were essentially constant over our sample, there would be no room for detecting how perceived

developments in the macroeconomy are re�ected in the foreign exchange market.

Figure 2: Left hand panel: Real-time estimates of log US consumer prices (solid line) and Germany
consumer prices (dashed line). Right hand panel: Real-time estimates of US M1 (solid line) and German
M1 (dashed line). All series are detrended.

In the analysis that follows we consider the joint behavior of exchange rates, order �ows and the real-time

estimates of macro variables at the weekly frequency. This approach provides more precision in our statistical

inferences concerning the high frequency link between �ows, exchange rates and macro variables than would

be otherwise possible. The weekly timing of the variables is as follows: We take the log spot rate at the

start of week t; st; to be the log of the o¤er rate (USD/EUR) quoted by Citibank at the end of trading on

Friday of week t � 1 (approximately 17:00 GMT). This is also the point at which we sample the week�t
interest rates from Datastream. The week-t �ow from segment j; xj;t; is computed as the total value in $m

of dollar purchases initiated by the segment against Citibank�s quotes between the 17:00 GMT on Friday

of week t � 1 and Friday of week t: Positive values for these order �ows therefore denote net demand for
euros by the end-user segment: The week�t change in the real-time estimates are computed as the di¤erence
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between the Friday estimates on weeks t � 1 and t � 2: This timing insures that the week-t change in the
real-time estimates are derived using a subset of the information available to foreign exchange dealers when

quoting spot rates at the start of week-t trading. In other words, our timing assumptions insure that the

information used to compute {m(�)jt or {q(i)jt is a subset of the information available to all dealers when
quoting the spot rate st:12

Summary statistics for the weekly data are reported in Table 1. The statistics in panel A show that weekly

changes in the log spot rate, �st � st� st�1; have a mean very close to zero and display no signi�cant serial
correlation. These statistics are typical for spot exchange rates and suggest that the univariate process for st
is well-characterized by a random walk. Two features stand out from the statistics on the six �ow segments

shown in Panel B. First, the order �ows are large and volatile. Second, they display no signi�cant serial

correlation. At the weekly frequency, the end-user �ows appear to represent shocks to the foreign exchange

market arriving at Citibank. This is not to say that �ows are unrelated across segments. The (unreported)

cross-correlations between the six �ows range from approximately -0.16 to 0.16, but cross-autocorrelations

are all close to zero.

Summary statistics for the weekly changes in the real-time estimates are reported in Panel C of Table

1. The most notable feature of these statistics concerns the estimated autocorrelations. These are generally

small and insigni�cant at the 5% level except in the case of the M1 real-time estimates. For perspective on

these �ndings, consider the weekly change in the monthly series {: If the weekly change falls within a single
month, the change in real-time estimate is

{m(�)jw(j) � {m(�)jw(j-1) � E[{m(�)j
w(j)]� E[{m(�)j
w(j�1)];

where w(j) denotes the last day of week j: In this case the weekly change simply captures the �ow of new

information concerning the value of { in the current month, {m(�); and so should not be correlated with any
elements of 
w(j�1); including past changes in the real-time estimates. If the weekly change occurs at the

end of the month, the change in the real-time estimate can be written as

{m(�+1)jw(j) � {m(�)jw(j-1) =
�
E[{m(�+1)j
w(j)]� E[{m(�+1)j
w(j�1)]

�
+
�
E[{m(�+1) � {m(�)j
w(j�1)]

�
:

Here the �rst term on the right hand side represents the the �ow of new information concerning {m(�+1):
Once again this should not be correlated with any elements in 
w(j�1): The second term identi�es initial

expectations about the growth in { from month � to � + 1: This term is a function of elements in 
w(j�1)
and so may be correlated with past changes in the real-time estimates.

The autocorrelations in Table 1 are computed from all weekly changes in our sample, and so capture the

characteristics of both the within and cross-month changes. The small amounts of positive serial correlation

we see re�ect the fact that forecasts for monthly M1 growth are positively correlated with past growth, a

feature that is evident from the plots in Figure 2. That said, the over-arching implication of the estimated

autocorrelations is that the weekly changes in each real-time estimates primarily re�ects the arrival of new

information concerning the current state of the corresponding macro variable. Our real-time estimates will

therefore enable us to capture changing perceptions concerning the current state of the macroeconomy rather

than its actual evolution. It is the link between the changing perceptions of market participants and the

12More precisely, our timing assumptions imply that the real-time estimates of {m(�)jt or {q(i)jt incorporate macro data
releases that are only a few hours old by the time dealers quote st:
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Table 1: Summary Statistics

mean max skewness Autocorrelations
Std. min kurtosis �1 �2 �4 �8

A: Exchange Rate
(i) �st (x100) -0.043 3.722 0.105 -0.061 0.027 0.025 -0.015

1.234 -3.715 3.204 (0.287) (0.603) (0.643) (0.789)
B: Order Flows
(ii) Corporate US -16.774 549.302 -0.696 -0.037 -0.040 0.028 -0.028

108.685 -529.055 9.246 (0.434) (0.608) (0.569) (0.562)
(iii) Corporate Non-US -59.784 634.918 -0.005 0.072 0.089 -0.038 0.103

196.089 -692.419 3.908 (0.223) (0.124) (0.513) (0.091)
(iv) Traders US -4.119 1710.163 0.026 -0.021 0.024 0.126 -0.009

346.296 -2024.275 8.337 (0.735) (0.602) (0.101) (0.897)
(v) Traders Non-US 11.187 972.106 0.392 -0.098 0.024 0.015 0.083

183.36 -629.139 5.86 (0.072) (0.660) (0.747) (0.140)
(vi) Investors US 19.442 535.32 -1.079 0.096 -0.024 -0.03 -0.016

146.627 -874.15 11.226 (0.085) (0.568) (0.536) (0.690)
(vii) Investors Non-US 15.85 1881.284 0.931 0.061 0.107 -0.030 -0.014

273.406 -718.895 9.253 (0.182) (0.041) (0.550) (0.825)
C: Real-Time Data
(viii) US Output -0.001 0.711 0.060 0.072 0.107 -0.015 0.058

0.201 -0.610 0.134 (0.084) (0.056) (0.788) (0.329)
(ix) US Prices 0.000 0.250 1.527 0.006 -0.034 0.091 0.004

0.030 -0.104 18.673 (0.695) (0.135) (0.142) (0.963)
(x) US Money -0.007 5.679 -0.230 0.076 0.065 0.132 0.032

1.368 -6.981 9.160 (0.003) (0.012) (0.131) (0.595)
(xi) German Output 0.002 2.840 -0.298 0.072 -0.039 -0.009 0.019

0.514 -4.087 20.437 (0.138) (0.193) (0.873) (0.671)
(xii) German Prices 0.002 4.090 0.105 0.069 0.005 0.009 -0.044

0.817 -3.988 8.632 (0.111) (0.918) (0.864) (0.444)
(xiii) German Money 0.022 7.447 1.073 0.116 0.083 0.100 0.042

1.421 -6.263 13.120 (0.000) (0.000) (0.339) (0.473)
Notes: The table reports summary statistics for the following variables sampled at the weekly
frequency between January 1993 and June 1999: (i) the weekly change in the log spot rate x100,
(ii)-(vii) order �ows from end-user segments cumulated over a week, and (viii)- (xiii) weekly changes
in real-time estimates measured in annual percent. The last four columns on the right report
autocorrelations �i at lag i and p-values for the null that �i = 0 in parentheses.

behavior of exchange rate that is the focus of our empirical analysis.

4 Empirical Analysis

In this section we examine the empirical implications of Propositions 1 - 3. First, we consider the implications

of our model for the correlation between order �ows and changes in spot exchange rates. Next, we examine

the links between spot rates and fundamentals. Our model identi�es conditions under which order �ow

should have incremental forecasting power beyond spot rates. We �nd strong empirical support for this
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prediction, implying that order �ows convey information about macro fundamentals to the market. Finally,

we investigate whether this informational role can account for the forecasting power of order �ows for future

changes in exchange rates.

4.1 The Order Flow/Spot Rate Correlation

Evans and Lyons (2002a,b) show that order �ows account for between 40 and 80 percent of the daily variation

in the spot exchange rates of major currency pairs. Propositions 1 - 3 provide a structural interpretation

of this �nding. Recall that when dealers� foreign currency quotes satisfy (11) and (12) in Proposition 1,

the log spot rate satis�es Edt�st+1 + r̂t � rt =  : Combining this restriction with the identity �st+1 �
Edt�st+1 + st+1 � Edt st+1 gives

�st+1 = rt � r̂t +  + st+1 � Edt st+1;
= rt � r̂t +  + �

�
Edt+1yt+1 � Edt yt+1

�
; (26)

where the second line follows from the relation between the spot rate and state vector described by equation

(19). Thus, Proposition 1 implies that the rate of depreciation is equal to the interest di¤erential, a risk

premium, and the revision in dealer forecasts concerning the future state of the economy between periods

t and t + 1: This forecast revision is attributable to two possible information sources. The �rst is public

information that arrives right at the start of period t+1, before dealers quote st+1. The second is information

conveyed by the transaction �ows during period t: It is this second information source that accounts for the

correlation between order �ow and spot rate changes in the data.

Proposition 4 When dealer quotes for the price of foreign currency satisfy (11), and order �ow follows

(22), the rate of depreciation can be written as

�st+1 = rt � r̂t +  + b (xt � Edt xt) + �t+1: (27)

�t+1 represents the portion of �
�
Edt+1yt+1 � Edt yt+1

�
that is uncorrelated with order �ow, and b is a pro-

jection coe¢ cient equal to

�CV (yt+1; ot)
V(xt)

+
��V (rEhtyt+1)�0�0

V(xt)
+
�̂�V

�
rEbhtyt+1

�
�̂0�0

V(xt)
; (28)

where V (:) and CV(:; :) denote the population variance and covariance:

Inspection of expression (28) reveals that the observed correlation between order �ow and the rate of

depreciation can arise through two channels. First, if the distribution of wealth and dealer bond holdings

a¤ect order �ow (via ot in equation 17) and has forecasting power for fundamentals, order �ow will be

correlated with the depreciation rate through the �rst term in (28). Since there is little variation in ot from

month to month or even quarter to quarter, it is unlikely that this channel accounts for much of the order

�ow/spot rate correlation we observe at a daily or weekly frequency. The second channel operates through

the transmission of dispersed information. If household expectations for the future state vector di¤er from

dealers� expectations, and information aggregation accompanies trading in period t; both the second and
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third terms in (28) will be positive. Notice that the depreciation rate is correlated with order �ow in this

case not just because households and dealers hold di¤erent expectations, but also because households expect

some of their information to be assimilated by dealers from the transaction �ows they observe in period t: In

this sense, the correlation between order �ow and the depreciation rate informs us about both the existence

of dispersed information and the pace at with information aggregation takes place.

Table 2: Contemporaneous Return Regressions

Horizon Interest Corporate Traders Investors R2 �2

Di¤erential US Non-US US Non-US US Non-US (p-value)
1 week

-0.2 -0.326 -1.096 0.03 12.627
(0.391) (0.584) (0.309) (0.002)
-0.193 1.018 0.63 0.094 38.139
(0.364) (0.170) (0.350) (0.000)
-0.134 1.194 1.441 0.131 30.818
(0.341) (0.576) (0.327) (0.000)
-0.297 -0.321 -0.817 0.791 0.632 1.108 1.254 0.213 88.758
(0.325) (0.535) (0.291) (0.170) (0.337) (0.572) (0.312) (0.000)

4 weeks
-0.182 -0.006 -0.340 0.058 16.101
(0.252) (0.165) (0.085) (0.000)
-0.168 0.279 0.11 0.113 23.354
(0.247) (0.061) (0.118) (0.000)
0.001 0.144 0.49 0.251 68.471
(0.204) (0.121) (0.063) (0.000)
-0.19 0.027 -0.202 0.177 0.046 0.218 0.41 0.323 109.571
(0.209) (0.138) (0.071) (0.060) (0.101) (0.119) (0.066) (0.000)

Notes: The table reports coe¢ cients and standard errors from regressions of returns measured over one
week and one month, on a constant (estimates not reported), the lagged interest di¤erential and order
�ows cumulated over the same horizon. The interest di¤erential is computed from the one month rates on
Euro Dollar and DM deposits. Estimated coe¢ cients on the order �ows are multiplied by 1000. The right
hand column reports �2 statistics for the null that all the coe¢ cients on order �ows are zero. Estimates
are calculated at the weekly frequency. The standard errors correct for heteroskedasticity and the moving
average error process induced by overlapping forecasts (4 week results).

Now we turn to the empirical evidence. Table 2 presents the results of regressing currency returns between

the start of weeks t and t+� for � = f1; 4g on a constant, the interest di¤erential at the start of week t; rt�r̂t;
and the order �ows from the six segments between the start of weeks t and t+ � . These regressions are the

empirical counterparts to (27) with the six �ows proxying for xt�Edt xt: Several points emerge from the table.
First, the coe¢ cients on the order �ow segments are quite di¤erent from each other. Some are positive, some

are negative, some are highly statistically signi�cant, others are not. Second, while the coe¢ cients on order

�ow are jointly signi�cant in every regression we consider, the proportion of the variation in returns that

they account for rises with the horizon: the R2 statistic in regressions with all six �ows rises from 21 to 32

percent as we move from the 1 to 4 week horizon.13 Third, the explanatory power of the order �ows shown

13Froot and Ramadorai (2002) also �nd stronger links between end-user �ows and returns as the horizon is extended to 1
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here is much less than that reported for interdealer order �ows. Evans and Lyons (2002a), for example,

report that interdealer order �ow accounts for approximately 60 percent of the variations in the $/DM at

the daily frequency. Finally, we note that none of the coe¢ cients on the interest di¤erential are statistically

signi�cant, and many have an incorrect (i.e. negative) sign.14 This is not surprising in view of the empirical

literature examining uncovered interest parity. However, the estimated coe¢ cients on the order �ows are

essentially unchanged if we re-estimate the regressions with a unity restriction on the interest di¤erential, as

implied by equation (27).

The key to understanding these results lies in the distinction between unexpected order �ow in the model,

xt � Edt xt; and our six end-user �ows: According to the model, realized foreign exchange returns re�ect the
revision in dealer�s quotes driven by new information concerning fundamentals. This information arrives in

the form of public news, macro announcements and inter-dealer order �ow, but not the end-user order �ows

of individual dealers such as Citibank: Any information concerning fundamentals contained in the end-user

�ows received by individual banks a¤ects the FX price quoted by dealers only once it is inferred from the

inter-dealer order �ows observed by all dealers. In Evans and Lyons (2006) we study the relationship between

end-user �ows and market-wide inter-dealer order �ow (i.e., the counterpart to xt � Edt xt). This analysis
shows that individual coe¢ cients have no structural interpretation in terms of measuring the price-impact

of di¤erent end-user orders, they simply map variations in end-user �ows into an estimate of the information

�ow being used by dealers across the market. This interpretation also accounts for the pattern of explanatory

power: As the horizon lengthens, the idiosyncratic elements in Citibank�s�end-user �ows become relatively

less important, with the result that the �ows are more precise proxies for the market-wide �ow of information

driving quote revisions.

To summarize, the results in Table 2 show that end-user �ows are contemporaneously linked with changes

in spot rates, but the strength of the link is less than that reported elsewhere for inter-dealer order �ows.

Once one recognizes that Citibank�s end-user �ows are an imperfect proxy for inter-dealer order �ows, our

�ndings are consistent with the theoretical link between exchange rates and order �ow implied by the model.

4.2 Forecasting Fundamentals

According to Proposition 3, changes in the exchange rate are correlated with order �ow because the latter

contains information concerning fundamentals. If this is the mechanism responsible for the results reported

in Table 2, order �ows ought to have forecasting power for future fundamentals. We now examine whether

this implication of our model applies to the end-user �ows. First we derive the model�s implications for

forecasting fundamentals with spot rates and order �ows. We then examine the forecasting power of spot

rates and the end-user �ows for future changes in our real-time estimates.

The model�s implications for forecasting fundamentals with spot rates follow straightforwardly from

Proposition 1. In particular equation (11) can be rewritten as

st = Edt ft + Edt
1X
i=1

�
�
1+�

�i
�ft+i: (29)

month; their �ow measure is institutional investors, however, not economy-wide.
14We report results using 4 week rates on Euro-dollar and Euro-mark deposits in both panels of the table because 1 week

euro-current rates were unavailable over the entire sample period. Re-estimating the regressions in the upper panel with 1 week
rates when they are available over the second half of the sample gives very similar results.
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Thus, the log spot rate quoted by dealers di¤ers from dealers�current estimate of fundamentals by the present

value of future changes in fundamentals. One implication of (29) is that the gap between the current spot rate

and estimated fundamentals, st � Edt ft; should have forecasting power for future changes in fundamentals.
This can be formally shown by considering the projection:

�ft+� = �s (st � Edt ft) + "t+� ; (30)

where �s =
1X
i=1

�
�
1+�

�i �
CV(Edt�ft+i;E

d
t�ft+� )=V (st � Edt ft)

	
;

and "t+� is the projection error that is uncorrelated with st � Edt ft. The projection coe¢ cient �s provides
a measure of the forecasting power of st � Edt ft for the change in fundamentals � periods ahead.
Now we turn to the forecasting power of order �ow. According to Proposition 3, order �ow is driven

in part by di¤erences between dealers� forecasts and household forecasts concerning future fundamentals.

Consequently, if households have more precise information concerning future fundamentals than dealers,

order �ows should have incremental forecasting power beyond that contained st � Edt ft: We formalize this
idea in the following proposition.

Proposition 5 When dealer quotes for the price of foreign currency satisfy (11), and order �ow follows

(22), changes in future fundamentals are related to spot rates and order �ows by

�ft+� = �s (st � Edt ft) + �x (xt � Edt xt) + �t+� ; (31)

where �t+� is the projection error. �s is the projection coe¢ cient identi�ed in (30) and �x is equal to

CV (ot;�ft+� )
V (xt � Edt xt)

+
���V (rEhtyt+1)

�
A��1

�0
C 0{02

V (xt � Edt xt)
+
�̂��̂V

�
rEbhtyt+1

� �
A��1

�0
C 0{02

V (xt � Edt xt)
:

The intuition behind Proposition 5 is straightforward. Recall from (29) that st � Edt ft is equal to the
present value of future changes in fundamentals. The �rst term in (31) is therefore a function of dealers�

information at the start of period t; 
dt : Period-t order �ow will have incremental forecasting power of future

changes in fundamentals, beyond st � Edt ft; when it conveys information about �ft+� that is not already
known to dealers (i.e. in 
dt ): The expression for �x shows that this will happen when: (i) the distribution

of wealth and dealer bond holdings a¤ect order �ow and have forecasting power for fundamentals, and (ii)

when there is dispersed information concerning future fundamentals and information aggregation occurs via

period-t trading. Proposition 4 showed that order �ow would be correlated with the depreciation rate under

these same conditions. Thus, if our theoretical rationale for the results in Table 2 holds true, we should also

�nd that order �ow has incremental forecasting power for future changes in fundamentals.

To assess the empirical evidence on this prediction, we consider forecasting regressions of the form:

��{t+� = a1�
k{t + a2�kst +

P6
n=1 �jx

k
j;t + �t+� ; (32)

where ��{t+� denotes the ��week change in the real-time estimate of variable { ending at week t+ � ; �kst
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is the rate of depreciation between weeks t�k and t; and xkj;t is the order �ow from segment j in weeks t�k
to t: The �rst two terms on the right hand side are known to dealers at the start of week t and are used to

proxy for st � Edt ft in equation (31). Estimates of the �j coe¢ cients will reveal whether our end-user �ows
have incremental forecasting power for future fundamentals.

Table 3 presents the results from estimating (32) in weekly data with horizons � ranging from one month

to two quarters. We report results where k is set equal to � ; but our �ndings are not sensitive to the number

of cumulation weeks k: There are a total of 284 weekly observations in our sample period, so there are 11

non-overlapping observations on the dependent variable at our longest forecasting horizon (e.g. 2 quarters).

In each cell of the table we report the R2 statistic as a measure of forecasting power and the signi�cance level

of a Wald test for the joint signi�cance of the forecasting variables. These test statistics are corrected for

conditional heteroskedasticy and the moving-average error structure induced by the forecast overlap using

the Newey-West estimator.

The results in Table 3 clearly show that order �ow has considerable forecasting power for all of the six

macro variables, and this forecasting power is typically a signi�cant increment over the forecasting power of

the other variables considered. Consider, for example, the case of US GDP. At the two-quarter forecasting

horizon, order �ow produces an R2 statistic of 24.6 percent, which is signi�cant at the one-percent level. In

contrast, forecasting US GDP two months out using both past real-time estimates of GDP and the spot rate

produces an R2 statistic of only 9.6 percent, a level of forecasting power that is insigni�cant at conventional

levels. In general, the forecasting power of order �ow is greater as the forecasting horizon is lengthened.15

Our �ndings in Table 3 are robust to the inclusion of other variables as proxies for st�Edt ft: In particular,
we have estimated versions of (32) that include multiple lags of �k{t and �kst as well as the term spread,

default spread and the commercial paper spread.16 We found that the term spread predicts US GDP and

M1, and German prices and M1, while the default and commercial paper spreads predict US GDP. However,

the marginal forecasting contribution of these variables is small. Moreover, in all cases, the forecasting

contribution of the six �ow segments remains highly signi�cant at one and two-quarter horizons. These

�ndings indicate that the results in Table 3 are indeed robust to the inclusion of di¤erent variables proxying

for st � Edt ft:
Although the longest horizon we consider in Table 3 is short compared to the span of our data, our

asymptotic inferences concerning forecasting power over 1 and 2 quarters may not be entirely reliable.17

To insure that our forecasting �ndings are robust, we supplemented our analysis at these two horizons

15Our theoretical model indicates that US and German consumption are components of fundamentals. Unfortunately, we
were not able to compute real-time estimates for both consumption series because the sequence of data releases for German
consumption are unavailable. We did compute real-time estimates of US consumption and found that the forecasting power of
order �ows is similar to that we report for US GDP.
16The term spread is the di¤erence between the 3-month and 5-year yields on US bonds. We compute the default spread as

the di¤erence between Moody�s AAA corporate bond yield and Moody�s BAA corporate bond yield. The commercial paper
spread is the di¤erence between the 3-month commercial paper rate and the 3-month T-Bill rate. Before September 1997 we use
the 3-month commercial paper rate, thereafter the 3-month rate for non-�nancial corporations. We obtained the term structure
data from CRSP, and the other interest rates from the FRED database at the St Louis Fed.
17Estimates of long-horizon forecasting regressions like (32) are susceptible to two well-known econometric problems. First,

the coe¢ cient estimates may su¤er from �nite sample bias when the independent variables are predetermined but not exogenous.
Second, the asymptotic distribution of the estimates provides a poor approximation to the true distribution when the forecasting
horizon is long relative to the span of the sample. Finite-sample bias in the estimates of �j is not a prime concern here because
our six �ow segments display little or no autocorrelation and are uncorrelated with past changes in the real-time estimates.
There should also be less of a size distortion in the asymptotic distribution than found elsewhere. For example, Mark (1997)
considers a case where the data span is less than �ve times the length of his longest forecasting horizon. Here, we have 11
non-overlapping observations at the 2-quarter horizon.
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Table 3: Forecasting Fundamentals

Forecasting US GDP German GDP
Variables 1M 2M 1 Q 2Q 1M 2M 1Q 2Q
GDP 0.002 0.003 0.022 0.092 0.004 0.063 0.089 0.006

(0.607) (0.555) (0.130) (0.087) (0.295) (0.006) (0.009) (0.614)
Spot Rate 0.001 0.005 0.005 0.007 0.058 0.029 0.003 0.024

(0.730) (0.508) (0.644) (0.650) (0.002) (0.081) (0.625) (0.536)
GDP and Spot 0.003 0.007 0.031 0.096 0.059 0.083 0.099 0.033

(0.802) (0.710) (0.287) (0.224) (0.007) (0.021) (0.024) (0.709)
Order Flows 0.032 0.080 0.189 0.246 0.012 0.085 0.075 0.306

(0.357) (0.145) (0.002) (0.000) (0.806) (0.227) (0.299) (0.000)
All 0.052 0.086 0.199 0.420 0.087 0.165 0.156 0.324

(0.383) (0.195) (0.011) (0.000) (0.021) (0.037) (0.130) (0.000)
US Prices German Prices

Prices 0.003 0.024 0.005 0.053 0.007 0.037 0.053 0.024
(0.461) (0.146) (0.487) (0.213) (0.402) (0.067) (0.040) (0.232)

Spot Rate 0.005 0.007 0.013 0.016 0.081 0.000 0.000 0.033
(0.351) (0.419) (0.391) (0.457) (0.000) (0.962) (0.858) (0.305)

Prices and Spot 0.007 0.028 0.015 0.06 0.088 0.038 0.053 0.051
(0.505) (0.352) (0.636) (0.441) (0.002) (0.214) (0.112) (0.364)

Order Flows 0.025 0.050 0.116 0.212 0.050 0.116 0.178 0.271
(0.773) (0.629) (0.052) (0.000) (0.429) (0.010) (0.025) (0.000)

All 0.031 0.082 0.124 0.240 0.127 0.158 0.258 0.511
(0.788) (0.151) (0.010) (0.000) (0.005) (0.021) (0.005) (0.000)

US Money German Money
Money 0.071 0.219 0.253 0.329 0.05 0.111 0.122 0.041

(0.009) (0.000) (0.000) (0.000) (0.023) (0.005) (0.017) (0.252)
Spot Rate 0.021 0.001 0.003 0.005 0.002 0.044 0.036 0.065

(0.054) (0.778) (0.732) (0.619) (0.558) (0.031) (0.123) (0.343)
Money and Spot 0.086 0.22 0.267 0.333 0.05 0.13 0.129 0.08

(0.002) (0.000) (0.000) (0.000) (0.075) (0.004) (0.040) (0.403)
Order Flows 0.034 0.119 0.280 0.424 0.026 0.082 0.152 0.578

(0.466) (0.239) (0.026) (0.000) (0.491) (0.147) (0.037) (0.000)
All 0.096 0.282 0.417 0.54 0.074 0.175 0.284 0.624

(0.056) (0.000) (0.000) (0.000) (0.244) (0.020) (0.001) (0.000)
The table reports the R2 statistic from the forecasting regression (32) for the real-time estimate of the
fundamental listed in the header of each panel, using the forecasting variables reported on the left. The
regressions are estimated in weekly data (284 observations). Signi�cance levels for statistics testing the
null hypothesis of no predictability (corrected for heteroskedasticity and the forecast horizon overlap) are
reported in parentheses. The forecasting horizons listed at the head of each column are 1 month (� = 4); 2
months (� = 8); 1 quarter (� = 13) and 2 quarters (� = 26):

with the following Monte Carlo experiment: First we estimated an AR(4) process for weekly change in the

real-time estimate, �{t and a fourth-order VAR for the weekly change in log spot rate, �st; and the six

�ow segments, xj;t: Next, we generated a pseudo data series spanning 284 weeks for �{t by combining a
bootstrap sample from the �{t residuals with estimates of AR(4) process. Pseudo data series for �st and
xj;t are similarly generated by bootstrap sampling from the VAR residuals and estimates. Notice that under
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this data generation process, realizations of �{t are independent from the other variables. We then used

the pseudo data to estimate equation (32) at the 1 quarter (� = 13) and 2 quarter (� = 26) horizons. This

process was repeated 5000 times to construct a bootstrap distribution for the regression estimates under the

null hypothesis that both spot rates and order �ows have no forecasting power for the real-time estimates of

fundamentals.

Table 4: Contributions to Fundamentals�Forecasts

Forecast Spot Fund Corporate Traders Investors All Flows
US non-US US non-US US non-US

US
GDP
1Q -0.013 -0.111 1.476 0.329 -0.235 0.283 -0.099 -0.116

0.230 1.689 8.797�� 3.579 2.946 0.483 0.684 1.575 18.064��

2Q -0.109 -0.449 0.709 0.283 0.607 -0.218 -0.662 0.281
-2.332��� 13.544 6.300 2.763 15.921�� 0.458 3.600 1.839 30.882��

Prices
1Q 0.005 0.048 -0.144 0.040 0.037 -0.068 -0.072 0.020

0.987�� 0.330 1.874 1.829 2.406 1.955 1.301 1.695 11.060��

2Q -0.006 0.184 0.141 -0.010 -0.045 0.083 -0.020 0.100
-1.247�� 4.150 0.664 -0.602 1.027 1.525 0.993 17.236� 20.842

M1
1Q 0.360 0.425 0.919 -0.957 2.129 -5.184 -9.573 -2.477

0.577��� 21.427�� 0.633 -0.826 -0.045 3.020 14.798�� 2.160 19.740��

2Q -1.039 0.439 1.391 -3.944 5.292 -1.806 -10.537 -0.056
1.962��� 30.842�� 1.259 -2.929 1.657�� 0.855 19.764� 0.009 20.615�

German
GDP
1Q 0.095 -0.281 -0.983 -0.712 0.302 -0.997 -0.726 -0.426

0.617��� 8.814� 0.257 2.108 0.409 2.646 0.368 0.394 6.181�

2Q -0.042 -0.106 -1.677 0.260 0.024 -0.845 1.402 1.170
-0.859 0.837 2.630 -0.730 0.095 3.026 6.511 19.995� 31.527��

Prices
1Q -0.192 -0.286 2.315 0.167 -0.068 -3.479 -2.701 1.027

-0.307��� 6.483� 2.485 0.065 0.052 9.421�� 5.384 2.171 19.578��

2Q -0.531 -0.491 1.764 0.714 0.104 -3.242 -4.703 1.394
7.156��� 7.04� 2.263 3.142 -0.327 3.287 25.076� 3.355 36.797�

Money
1Q 0.724 0.396 -3.224 2.408 -0.233 3.210 5.180 -5.215

-3.982��� 13.88�� 0.443 1.928 0.154 1.046 1.749 13.15�� 18.469���

2Q 1.143 0.243 5.670 -3.091 0.203 8.813 -4.129 -11.436
-6.683��� 4.935 0.938 0.349 -0.067 10.483� 1.530 50.605��� 63.838���

Notes: The upper entry in each cell is the OLS coe¢ cient in the forecasting equation computed
at the 1 quarter (� =13) and 2 quarters (� = 26) horizon. The lower entry is the percentage
contribution to the variance of the forecast variable. Estimated contributions falling in the 10, 5,
and 1 percent tails of the bootstrap distribution are denoted by *, **, and ***.

The results of our Monte Carlo experiment are shown in Table 4. To conserve space we only report the
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results from regressions that include the real-time estimates, spot rates and the end-user �ows. The upper

entry in each cell is the OLS coe¢ cient on the variable listed at the head of each column estimated from

our data. The lower entry is the percentage contribution of the variable to the variance of the future change

in the fundamental, again estimated from our data.18 The variance contribution of all six end-user �ows is

shown in the right hand column. We compare these estimated variance contributions to the Monte Carlo

distribution of the contributions generate under the null of no forecastability, and denote by �*�, �**�and

�***�cases where the variance contribution lies in 10, 5 and 1 percent tails of the bootstrap distribution.

The results in Table 4 complement our earlier �ndings in two important ways. First, the Monte Carlo

results con�rm that our end-user �ows have signi�cant incremental forecasting power for fundamentals.

Although many of the variance contributions from the individual �ow segments do not appear statistically

signi�cant when compared against the Monte Carlo distribution, the joint contribution of all six �ows are

signi�cant at the 5 percent level at either the one or two quarter horizon. Moreover, judged by the estimated

size of the variance contributions, the order �ows contain information that accounts for an economically

meaningful fraction of variance in the variable being forecast. In fact, with the exception of US M1, the

order �ows account for more of the variance than do spot rates or fundamentals. The second noteworthy

feature of Table 4 concerns the forecasting contribution of spot rates. Although the estimates are small,

they are highly statistically signi�cant at the two quarter horizon for all six variables. Consistent with the

present value equation in (11), changes in the spot rates do appear to contain information about the future

course of macro fundamentals. We also note from Table 4 that there is a good deal of heterogeneity in the

estimated coe¢ cients and contributions of the individual order �ows.19 Imperfect classi�cation of end-user

orders into our six segments probably accounts for some of this heterogeneity. Recall that our �ow segments

are classi�ed according to trade location rather than the nationality of the end-user. Nevertheless, we do

note that the largest and most statistically signi�cant contributions come from US-located trades for US

variables, and non-US-located trades for German variables.

The results in Tables 3 and 4 contrast quite sharply from the �ndings of Froot and Ramadorai (2005).

They found no evidence of a long run correlation between real interest rate di¤erentials (their measure of

fundamentals) and the transaction �ows of institutional investors. One likely reason for this di¤erence is

the wider span of end-users generating the order �ows in our data. The estimates in Table 4 suggest that

transactions from di¤erent end-users convey di¤erent information.

Our use of the real-time estimates is also important. Recall that the change in real-time estimate

comprises an ex ante forecast and an information �ow. For example, the change in the real-time estimate of

18To compute the contribution, we take the �tted values of (32),

��{t+� = â1�k{t + â2�kst +
P6
n=1 �̂jx

k
j;t + �̂t+�

multiply both sides by ��{t+� ; and take second moments:

V(��{t+� ) = â1CV(�k{t;��{t+� ) + â2CV(�kst;��{t+� ) +
P6
n=1 �̂jCV(x

k
j;t;�

�{t+� )xkj;t
+CV(��{t+� ; �̂t+� ):

Notice that by least squares, CV(��{t+� ; �̂t+� ) = V(�̂t+� ); so we end up with a decomposition for V(��{t+� ). The variance
contribution of the spot rate is therefore â2CV(�kst;��{t+� )=V(��{t+� ) and so on.
19 It is tempting to interpret the coe¢ cients on the individual �ows as measuring the information content of an unexpected

order from a particular segment. However, as we note earlier, our six �ows are correlated with one-another, so the information
content of an unexpected order cannot be measured by a single coe¢ cient.
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GDP over the �rst quarter of the year can be written as

lnGDPq(2)jw(13) � lnGDPq(1)jw(1) = E
�
�q lnGDPq(2)

��
w(1)�+ �lnGDPq(2)jw(13) � lnGDPq(2)jw(1)� ;
where �q lnGDPq(2) � lnGDPq(2)� lnGDPq(1) and w(j) denotes the �rst day on week j: Thus the change
in the real-time estimate comprises the ex ante forecast of GDP growth in the �rst quarter, and the �ow

of information concerning second-quarter GDP over the �rst quarter. Now according to (29), variations in

st � Edt ft re�ect changes in Edt
P1

i=1(
�
1+� )

i�ft+i: So if � is large, as Engel and West (2005) argue, and log

GDP is correlated with fundamentals ft; then variations in the ex ante forecasts, E
�
�q lnGDPq(3)

��
w(1)� ;
should track changes in st�Edt ft = Edt

P1
i=1(

�
1+� )

i�ft+i: This is the element in the real-time forecasts picked

up by the spot rate and lagged fundamentals. Table 4 showed that the estimated variance contributions

from these variables are small yet statistically signi�cant �exactly what we should expect to �nd if there is

little variation in the ex-ante forecasts.

The forecasting power of the order �ows for the real-time estimates works through a di¤erent mechanism.

Recall that our order �ows are not public information, so their forecasting power for the change in the real-

time estimates cannot come via changes in the ex-ante forecasts. Instead, the order �ows must be correlated

with the �ow of public information concerning the fundamental over the forecast horizon. For the case of

GDP, this is the second term in the decomposition above. The only di¤erence between lnGDPq(2)jw(13)
and lnGDPq(2)jw(1) is that the former estimate incorporates the information in public data releases between

week 1 and 13. With this perspective, our results in Tables 3 and 4 imply that the end-user �ows convey

information about future fundamentals that is subsequently revealed by the arrival of public data releases.

Clearly, these releases represent information that is incremental to the information embedded in spot rates

at the beginning of the forecast period. Our empirical �ndings therefore provide strong corroboration for

Proposition 5.

4.3 Exchange Rate Dynamics and Information Flow

One notable feature of the results in Tables 3 and 4 is that the forecasting power of our end-user �ows for

fundamentals appears stronger at longer forecasting horizons. We interpret this �nding as evidence that some

of the information conveyed by the order �ows only shows up in public news releases many months later. In

this section we investigate two implications of this interpretation. First, we examine whether end-user �ows

have forecasting power for changes in the exchange rate. Second, we consider whether the forecasting power

of �ows is consistent with their ability to forecast the future �ow of information concerning exchange rate

fundamentals.

To understand how our forecasting results for fundamentals relate to the forecastability of the exchange

rate, we return to the model. In particular, we consider the implications of Proposition 1 for the change in

the log spot rate.

Proposition 6 When dealer quotes for the price of foreign currency satisfy (11), the change in the log spot

rate between the start of period t and t+ � is

��st+� � st+� � st = '� (st � Edt ft;� ) + 1
1+�

1X
i=0

( �
1+� )

i
�
Edt+� � Edt

�
ft+�+i (33)
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where '� � ( 1+�� )
� � 1 > 0 and ft;� � '�+1

'� (1+�)

P��1
i=0 (

�
1+� )

ift+i:

Equation (33) shows us that the change in spot rate comprises two components. The �rst term on the

right identi�es the expected depreciation rate Edt [st+� � st]; which is proportional to the gap between the

current spot rate and expected �near-term� fundamentals, ft;� : The second term identi�es the impact of

new information regarding future fundamentals received by dealers between the start of periods t and t+ � ;

(Edt+� �Edt )ft+�+i: This will be the only term making a signi�cant contribution to the change in sport rates

over short and medium horizons. The reason is that reasonable estimates of the semi-interest elasticity, �;

fall between 20 to 60 (Engel and West 2005), so '� will be close to zero until � becomes very large. Any

variation in st � Edt ft;� will therefore have little impact on the realized change in spot rates. Consequently,
we should expect short- and medium-term changes in spot rates to be mainly driven by the arrival of new

information concerning the future course of fundamentals.

The implications of our �ndings in Tables 3 and 4 for forecasting returns should now be clear. If our

end-user �ows forecast changes in the real-time estimates of variable { because they contain information
about the future �ow of public information concerning {; the �ows should also have forecasting power for
future changes in spot rates if { is correlated with exchange rate fundamentals. In other words, our results
in Tables 3 and 4 suggest that end-user �ows ought to predict (Edt+� � Edt )ft+�+i if the macro variables we
examined are correlated with fundamentals.

To examine this hypothesis, we estimate the following forecasting regression:

��st+� = a0 + a1(rt � r̂t) +
6X
j=1

�jx
�
j;t + !t+� ; (34)

where rt � r̂t is the interest di¤erential between one month Eurodollar and Euromark deposits and x�j;t is

the order �ow from segment j in weeks t � � to t: We include the interest di¤erential to control for any

variations in expected depreciation (i.e., '� (st�Edt ft;� ) in equation 33). The regression errors !t+� pick up
news concerning future fundamentals that is not correlated with the end-user �ows.

Table 5 reports the results of estimating (34) for horizons � of one to four weeks. Two features of the

table are striking. First, many of the �i coe¢ cients on the end-user �ows are highly statistically signi�cant,

particularly the US corporate and long-term investor �ows. The right hand column shows Wald statistics

for the joint signi�cance of all six �ow segments that are highly signi�cant beyond the one week horizon.

By contrast, none of the coe¢ cients on the interest di¤erential are statistically signi�cant (although they do

have the correct positive sign). The second striking feature concerns the degree of forecastability as measured

by the R2 statistics. The forecasting power rises with the horizon, reaching 16 percent at four weeks. By

comparison, the R2 statistics from Fama-type regressions (where the rate of depreciation is regressed on the

interest di¤erential) are generally in the 2-4 percent range. Here all the forecasting power comes from the

order �ows. If we omit the interest di¤erentials and re-estimate the regressions, the estimated coe¢ cients

on the �ows and the R2 statistics are essentially unchanged.

The results in Table 5 point to a remarkably strong within-sample relation between order �ows and future

exchange rate changes. However, there is a long tradition in the exchange rate literature of considering out-

of sample forecasting performance. In Evans and Lyons (2005) we examined the out-of-sample forecasting

performance of the six order �ows for ��st+� with the restrictions a0 = 0 and a1 = 1: At the four week

horizon the out-of-sample forecasts accounted for a highly signi�cant 15.7 percent of the variation in excess
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Table 5: Forecasting Exchange Rate Changes

Weeks r̂ � r Corporate Traders Investors R2 �2

� US NUS US NUS US NUS (p-value)

1 0.102 0.482 -0.033 0.089 -0.153 -0.346 0.142 0.027 8.056
(0.409) (0.317) (0.136) (0.102) (0.198) (0.238) (0.141) (0.234)

2 0.147 0.509*** -0.037 0.088 -0.09 -0.449*** 0.163** 0.074 17.239
(0.324) (0.263) (0.104) (0.082) (0.148) (0.188) (0.096) (0.008)

3 0.176 0.615*** -0.034 0.095* -0.084 -0.432*** 0.145** 0.121 24.500
(0.305) (0.215) (0.090) (0.073) (0.137) (0.177) (0.082) (0.001)

4 0.202 0.544*** -0.042 0.094* -0.097 -0.517*** 0.137** 0.163 30.738
(0.302) (0.177) (0.084) (0.068) (0.125) (0.158) (0.072) (<0.001)

Notes: The table reports coe¢ cient and standard errors from regressions of future returns measured
over horizons � of one to four weeks, on an (unreported constant), the current interest di¤erential
and order �ows cumulated over the last 4 weeks. The left hand column reports Wald statistics
for the null that all the coe¢ cients on order �ow are zero. Estimates are calculated at the weekly
frequency. The standard errors correct for heteroskedasticity and the moving average error process
induced by overlapping forecasts (2 - 4 week results). *, **, and *** denote signi�cance at the 10%,
5% and 1% levels.

returns. This degree of forecastability closely matches the in-sample R2 statistic in Table 5. So even though

the statistics in the table relate to the within-sample relation between order �ows and changes in the exchange

rate, they are representative of the true out-of-sample forecasting power of order �ows.

In view of these results, it is now natural to ask whether the predictive power of order �ows for exchange

rate changes is consistent with their ability to forecast the future �ow of information concerning fundamentals.

To address this question, we need to take a stand on the relation between true fundamentals, ft; and our

real-time estimates. We consider 6 di¤erent measures based on the variables for which we have real-time

estimates, fmt : (i) the di¤erence between log GDP in the US and German, y � ŷ; (ii) the US-German log

price ratio, p� p̂; (iii) the US-German log M1 ratio, m� m̂; (iv) the US log M1 to GDP ratio, m� y; (v) the
German log M1 to GDP ratio, m̂� ŷ; and (vi) the log M1-GDP di¤erential between the US and Germany,

(m� y)� (m̂� ŷ): For each measure of fundamentals, fmt , we �rst calculate the projection of the quarterly
change in fmt on the six order �ows, Proj (�

qfmt+qjfxj;tg); as the �tted value from the regression

�qfmt+q � fmt+13 � fmt = �0 +
6X
j=1

�jx
4
j;t + �t+13:

We then estimate

��st+� = b0 + b1(rt � r̂t) + b2Proj(�qfmt+qjfxj;tg) + �t+� : (35)

If the predictive power of order �ows for future changes in the exchange rate are due to their ability to

forecast the future �ow of information concerning measured fundamentals, i.e. Edt+�fmt+13� Edt fmt+13; then
the estimates of b2 in (35) should be positive and signi�cant. Moreover, if our measure of fundamentals,
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fmt ; is closely correlated with actual fundamentals, ft; none of the individual order �ows xj;t; should have

incremental predictive power for ��st+� beyond their role in the projection Proj(�qfmt+qjfxj;tg):
Table 6 reports the estimates of the forecasting regression (35) for horizons � of one to four weeks,

using the projections of the six di¤erent fundamentals measures. Once again, we �nd the results rather

striking. First, the coe¢ cient estimates display a similar pattern across all four forecast horizons. The

coe¢ cients on the projections involving the log GDP and price ratios are small and statistically insigni�cant.

By contrast, the coe¢ cients on projections for the log M1 ratios, M1 to income ratios, and the M1-GDP

di¤erentials are all highly signi�cant. This constitutes direct empirical evidence that the end-user �ows are

conveying information about the future course of fundamentals, and it is this information that gives �ows

their forecasting power for future changes in spot rates. The second noteworthy feature concerns the R2

statistics. A comparison of the R2 statistics in Table 5 with the statistics in the lower three rows of each panel

in Table 6 shows that the forecasting power of the projections is almost as high as that of the underlying

order �ows. For example, at the four week horizon the R2 statistic from (35) using the projection of the

quarterly change in (m � y) � (m̂ � ŷ) is 13.3 percent, while the R2 from estimating (34) is 16.3 percent.

The use of the projection places restrictions on the way that the six �ows enter (35), but these restrictions

do little to impair the forecasting ability of �ows for future exchange rates. The right hand column of Table

6 provides more formal evidence on this idea. Here we report LM statistics for the null hypothesis that the

residuals from (35) are unrelated to the six �ows. If order �ows have forecasting power for exchange rates

for reasons that are unrelated to the role in conveying information about fundamentals, or the fundamentals

measures used in the projections are only weakly correlated with true fundamentals, we should �nd that

order �ows have some residual forecast power, so the null ought to be rejected. However, as the table shows,

we fail to reject the null in all the cases where the projection coe¢ cients appear signi�cant.
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Table 6: Information Flow Regressions

Horizon r̂ � r y � ŷ p� p̂ m� m̂ m� y m̂� ŷ (m� y) R2 LM
�(m̂� ŷ) (p-value)

1 week -0.229 -0.229 <0.001 7.859
(0.369) (0.949) (0.249)
-0.194 -0.290 0.001 8.525
(0.367) (0.507) (0.202)
0.161 0.589** 0.023 1.115
(0.387) (0.218) (0.981)
0.04 0.436** -0.700** 0.025 0.783
(0.398) (0.280) (0.281) (0.993)
0.110 0.585** 0.023 1.158
(0.381) (0.219) (0.979)

2 weeks -0.215 0.013 <0.001 21.882
(0.307) (0.704) (0.001)
-0.208 -0.129 0.001 23.977
(0.312) (0.420) (0.001)
0.199 0.656** 0.060 na
(0.317) (0.185)
0.055 0.467* -0.771** 0.063 3.741
(0.317) (0.227) (0.231) (0.712)
0.136 0.639** 0.059 4.787
(0.310) (0.184) (0.571)

3 weeks -0.208 -0.061 <0.001 32.498
(0.308) (0.659) (<0.001)
-0.198 -0.093 <0.001 39.596
(0.317) (0.399) (<0.001)
0.245 0.708** 0.104 4.475
(0.310) (0.169) (0.613)
0.101 0.524** -0.825** 0.109 4.364
(0.301) (0.212) (0.199) (0.628)
0.182 0.694** 0.102 5.926
(0.302) (0.172) (0.432)

4 weeks -0.214 -0.094 <0.001 52.375
(0.315) (0.651) (<0.001)
-0.200 -0.106 <0.001 53.402
(0.327) (0.383) (<0.001)
0.248 0.709** 0.135 8.033
(0.316) (0.156) (0.236)
0.122 0.564** -0.799** 0.138 9.129
(0.302) (0.193) (0.186) (0.166)
0.186 0.697** 0.133 10.109
(0.307) (0.162) (0.120)

Notes: The table reports coe¢ cients and asymptotic standard errors from regressions of future returns
measured over horizons of one to four weeks on the current interest di¤erential, and the projection of
the future quarterly change macro fundamentals on current order �ows from the six user-user segments.
Fundamentals are listed at the head of each column. The left hand column report LM statistics for the
null that the regression residuals are unrelated to order �ows. (The LM statistic could not be computed for
the case labelled �na�because the projection was perfectly correlated with one or more of the order �ows.)
Standard errors correct for heteroskedasticity and the moving average error process induced by overlapping
forecasts (2 - 4 week results). *, **, and *** denote signi�cance at the 10%, 5% and 1% levels.
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5 Conclusion

The aim of this paper has been to analyze the links between macro fundamentals, transaction �ows and

exchange rate dynamics. First, we presented a micro-founded general equilibrium model that provides the

theoretical foundation for understanding how dispersed information concerning macro fundamentals is con-

veyed to spot rates via transaction �ows. We then examine the empirical implications of the model. We

found that transaction �ows have signi�cant forecasting power for macro fundamentals �incremental fore-

casting power beyond that contained in exchange rates and other variables. We also showed that proprietary

transaction �ows have signi�cant forecasting power for future exchange returns and that this forecasting

power re�ects their ability to predict how �the market� will react to the �ow of information concerning

macro fundamentals. In sum, we �nd strong support for the idea that exchange rates vary as �the market�

assimilates dispersed information regarding macro fundamentals from transaction �ows.

Let us conclude with some perspective. Our results provide a qualitatively di¤erent view of why macro-

economic variables perform so poorly in accounting for exchange rates at horizons of one year or less. This

view is di¤erent from both the traditional macro and the emerging �micro�perspectives. Unlike the macro

perspective, we do not view all new information concerning macro fundamentals as being immediately em-

bedded into the exchange rate. Much information about macro fundamentals is dispersed and it takes time

for �the market�to fully assimilate its implications for the spot exchange rate. It is this assimilation process

that accounts for (much of) the disturbances in exchange rate equations. Our approach also di¤ers from the

extant micro perspective because models o¤ered thus far (e.g., Evans and Lyons 2002a,b) have interpreted

the information conveyed by transaction �ows as orthogonal to macro fundamentals. This information is

viewed, instead, as relating to the other driver within the broader asset pricing literature, termed stochastic

discount factors, expected returns or portfolio balance e¤ects. Most readers of this micro literature have

adopted the same view: transaction �ow e¤ects on exchange rates are about pricing errors, not about fun-

damentals. Our �ndings, by contrast, suggest that transaction �ows are central to the process by which

expectations of future macro variables are impounded into exchange rates.
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A Appendix

This Appendix has three sections. Appendix A.1 provides a detailed description of the model outlined in

Section 1 of the paper. Appendix A.2 derives the results presented in Propositions 1 - 6. Finally, Appendix

A.3 contains a brief description of how the real-time estimates are computed.

A.1 Model Details

A.1.1 Households

Under assumptions A1 and A2 in the text, the consumption and portfolio decisions facing the representative

US household can be written as the following dynamic programming problem:

J(Wh,t) = max
�t;�at ;�

m
t ;Ch,t

n
1

1�
C
1�

h,t + �

1�
 (�
m
tWh,t=Pt)

1�

+ �Eht J(Wh,t+1)

o
;

s.t. Wh,t+1 = Rt(ER
m
h,t+1Wh,t � PtCh,t);

ERmh,t+1 = 1 +
�
St+1R̂t

StRt
� 1
�
�t +

�
Rq
t+1

Rt
� 1
�
�at �

�
Rt�1
Rt

�
�mt

where Rqt+1 � (Qt+1 +Dt+1)=Qt is the return on us equity and

Wh,t = Rt�1Bh,t�1 + StR̂t�1B̂h,t�1 +RtAh,t�1 +Mh,t�1

is the dollar value of wealth at the beginning of period t: ERmh,t+1 is the excess return on wealth between

periods t and t+ 1 that depends on the share of wealth held in euro bonds �t � StB̂h,t=(R̂tWh,t); us equity

�at � QtAh,t=Wh,t; and real balances �mt � Mh,t=Wh,t: Solving this problem gives the following �rst-order

conditions:

Ch,t : Eht
�
�
�
Ch,t+1
Ch,t

��

Pt
Pt+1

Rt

�
= 1; (A1a)

�mt :
�
Mh,t

PtCh,t

��

= 1

�
Rt�1
Rt

; (A1b)

�at : Eht
�
�
�
Ch,t+1
Ch,t

��
 Rq
t+1

Rt

�
= 1; (A1c)

�t : Eht
�
�
�
Ch,t+1
Ch,t

��

St+1Pt
StPt+1

R̂t

�
= 1: (A1d)

To characterize optimal household decisions, we work with log normal approximations to the �rst-order

conditions and a log linearization of the budget constraint. We �rst combine the identity �mt � Mh,t=Wh,t

with the �rst-order condition for real balances and the de�nition of ERmh,t+1: The budget constraint can then

be rewritten as:
Wh,t+1

Wh,t
= Rt

�
ERh,t+1 � (1 + �(Rt)) PtCh,tWh,t

�
;

where �(R) � �1=

�
R�1
R

�1� 1

 and

ERh,t+1 � 1 +
�
St+1R̂t

StRt
� 1
�
�t +

�
Rq
t+1

Rt
� 1
�
�at :
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Notice that the coe¢ cient on the consumption-wealth ratio includes the �(Rt) function because increased

consumption raises holdings of real balances. This, in turn, reduces the growth in wealth because the return

on nominal balances is zero. Taking logs on both sides of the budget constraint, and linearizing the right

hand side around the point where the consumption-wealth ratio and home nominal interest rate are constant,

gives:

�wh,t+1 = rt + k +
1
� (erh,t+1 � &rt)�

1��
� (pt + ct � wh,t); (A2)

where � � 1� � (1 + �(R)) ; & � �(
�1)

(R�1)R�(R); k � ln �+ (1�

1
� ) ln�+ &=�; and � is the steady state value

of the consumption-wealth ratio, PtCh,t=Wh,t: Using the de�nition of ERh,t+1 above, we follow Campbell

and Viceira (2002) in approximating the log excess return on wealth by:

erh,t+1 = �at
�
rqt+1 � rt

�
+ �t (�st+1 + r̂t � rt) + 1

2�
a
t (1� �at )Vht

�
rqt+1

�
+ 1
2�t(1� �t)V

h
t (�st+1)� �t�atCVht

�
rqt+1;�st+1

�
; (A3)

where Vht (:) and CV
h
t (:; :) denote the variance and covariance conditioned on information 


h
t : This second�

order approximation holds exactly in the continuous�time limit when the spot exchange rate and the price

of other assets follow di¤usion processes.

We can now use (A2), (A3) and the log linearized �rst-order conditions to characterize the optimal choice

of consumption, real balances and the portfolio shares: Combining the log linearized versions of (A1c) and

(A1d) with (A2) and (A3) we obtain:"
�t

�qt

#
= �


 (�
h
t )
�1
"
Eht�st+1 + r̂t � rt + 1

2V
h
t (st+1)�  sh;t

Eht r
q
t+1 � rt + 1

2V
h
t (r

q
t+1)�  

q
h;t

#
; (A4)

where  vh;t = 
CVht (pt+1 + ch;t+1 � wh;t+1; vt+1) + (1� 
)CVht (�pt+1; vt+1) ;

for v = fs; rqg: The matrix �ht is the conditional covariance of the vector (�st+1; rqt+1)0: Eht�st+1+r̂t�rt� 
s
h;t

and Eht r
q
t+1 � rt �  qh;t are the risk�adjusted expected excess returns on euro bonds and us equities. The

variance terms arise because we are working with log excess returns.  vh;t identi�es the hedging factor

associated with euro bonds (v = s) and us equities (v = rq): All that now remains is to characterize the

demand for real balances and the consumption-wealth ratio. The former is found by log linearizing (A1b):

mh;t � pt = $ + ch;t � �rt; (A5)

where $ � 1

 ln�+ rR� and � � 1=
(R� 1) > 0: An approximation to the log consumption wealth-ratio is

found by combining (A2) with the linearized version of (A1a):

ch;t + pt � wh;t = �k
1�� +

�
1� 1




�
Eht

1X
i=0

�i+1(rt+i ��pt+1+i) + Eht
1X
i=1

�i�1(erh,t+i � &rt+i�1):

We can characterize the behavior of the representative European household in a similar way. Speci�cally,

the linearized budget constraint is:

�ŵbh;t+1 �= r̂t ��p̂t+1 + k + 1
�

�
erbh;t+1 � &r̂t�� 1��

� (p̂t + ĉbh;t � ŵbh;t); (A6)
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where the log excess return is approximated by:

erbh;t+1 �= �̂at (r
bq
t+1 � r̂t) + ~�t (it ��st+1 � i�t ) + 1

2 �̂
a
t (1� �̂at )V

bh
t (r

bq
t+1)

+ 1
2 ~�t(1� ~�t)V

bh
t (�st+1) + �

a
t ~�tCV

bh
t (r

bq
t+1;�st+1): (A7)

with ~�t � 1 � �̂at � �̂t � �̂mt as the share in dollar bonds in household wealth, and r
bq
t+1 denoting the log

return on European equity. The optimal portfolio shares are:"
~�t

�̂qt

#
= �




�
�̂bht
��1 " rt � Ebht�st+1 � r̂t + 1

2V
bh
t (�st+1)�  �sbh;t

Ebht rbqt+1 � r̂t + 1
2V

bh
t

�
rbqt+1

�
�  bqbh;t

#
(A8)

where  !bh;t = 
CVbht �ĉbh;t+1 + p̂t � ŵbh;t+1; vt+1�+ (1� 
)CVbht (�p̂t+1; vt+1) ;
for v = f�s; rbqg and �̂bht is the conditional covariance matrix for the vector (��st+1; rbqt+1)0. The demand
for log real balances is given by:

m̂bh;t � p̂t = $ + ĉbh;t � �r̂t; (A9)

and the log consumption wealth ratio by:

ĉbh;t + p̂t � ŵbh;tt = �k
1�� +

�
1� 1




�
Ebht

1X
i=0

�i+1(r̂t+i ��p̂t+1+i) + Ebht
1X
i=1

�i�1(erbh;t+i � &r̂t+i�1): (A10)

A.1.2 Firms

The pricing problem facing the us �rm can be written as the following dynamic programming problem:

Q(Kt) = max
P us
t ;P̂

us
t

Eust fDt=Pt + ��t+1Q(Kt+1)g ;

s.t. Dt

Pt
=

�
P us
t

Pt

�1��
Ct +

StP̂t
Pt

�
P̂ us
t

P̂t

�1��
Ĉt;

Kt+1 = (1� %)Kt + �tK
�
t �

�
P us
t

Pt

���
Ct �

�
P̂ us
t

P̂t

���
Ĉt;

where �t+1 � �t+1;t is the stochastic discount factor between periods t and t + 1: Recall that Eust denotes

expectations conditioned on the information available to us �rms at the start of period t; 
ust : The �rst-order

conditions for the us �rm�s problem are

P ust : 0 = Eust
�
(1��)
Pt

�
P us
t

Pt

���
Ct + ��

�t+1Q0(Kt+1)
Pt

�
P us
t

Pt

����1
Ct

�
; and

P̂ ust : 0 = Eust
�
(1��)
P̂t

StP̂t
Pt

�
P̂ us
t

P̂t

���
Ĉt + ��

�t+1Q0(Kt+1)

P̂t

�
P̂ us
t

P̂t

����1
Ĉt

�
:

Q0(Kt) is the marginal value of capital that satis�es the envelope equation Q0(Kt) = �Eust [�t+1Q0(Kt+1)R
k
t ],

where Rkt � (1�%)+��tK��1
t . Simplifying these equations and log-linearizing gives the following expressions

for the log prices set by us �rms

pust = Eust pt +must ; and p̂ust = Eust pt + m̂ust � Eust st;
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where must and m̂ust are the percentage markups in the price of us goods over the expected log us price-level,

Eust pt. Let nt � �t + lnQ0(Kt) where �t = ln�t We can now identify the markups by

must = Eust nt+1 � ln
�
��1
��

�
+ 1

2V
us
t (ct + �pt + nt+1)� 1

2V
us
t ((� � 1) pt + ct); and

m̂ust = Eust nt+1 � ln
�
��1
��

�
+ 1

2V
us
t (ĉt + �p̂t + nt+1)� 1

2V
us
t ((� � 1) pt + ĉt + "t) ;

where nt = ln � + Eust nt+1 + rkt + �t + 1
2V

us
t (nt+1) :

The pricing problem facing the eu �rm is analogous and produces the following approximations for the

log prices of eu goods:

p̂eut = Eeut p̂t + m̂eut ; and peut = Eeut p̂t + Eeut st +meut ;

with markups

m̂eut = � ln
�
��1
��

�
+ Eeut n̂t+1 + 1

2V
eu
t (ĉt + �p̂t + n̂t+1)� 1

2V
eu
t ((� � 1) pt + ĉt) and

meut = � ln
�
��1
��

�
+ Eeut n̂t+1 + 1

2V
eu
t (ct + �pt + n̂t+1)� 1

2V
eu
t ((� � 1) pt + ct � "t) ;

where n̂t � �̂t + lnQ0(K̂t) and n̂t = ln � + Eeut n̂t+1 + r̂kt + �̂t + 1
2V

eu
t (n̂t+1) with r̂

k
t � ln[(1� %) + ��̂tK̂��1

t ]:

We can now relate the real exchange rate to the pricing decisions of �rms. In particular, if we �rst write

the real exchange rate as

Et �
StP̂t
Pt

=

8><>:
P us1��t

�
StP̂

us
t =P

us
t

�1��
+ P eu1��t

�
StP̂

eu
t =P eut

�1��
P us1��t + P eu1��t

9>=>;
1=(1��)

and then take a log-linear approximation around the symmetric steady state of E = 1; we obtain

"t = 1
2 (st + p̂

us
t � pust ) + 1

2 (st + p̂
eu
t � peut );

= 1
2 (st � E

us
t st) +

1
2 (st � E

eu
t st) +

1
2 (m̂

us
t �must ) + 1

2 (m̂
eu
t �meut ):

Hence, the log real exchange rate varies with the expectational errors of �rms concerning the current spot

rate, and the di¤erential in the price markups between the European and US markets.

A.1.3 Dealers

Dealers make four decisions each period. They choose euro price quotes Sid;t and S
ii
d;t at the start of trading

rounds i and ii. The initiate trades, Td;t; against other dealers�quotes in round ii trading, and they choose

consumption, Cd;t; after trading is complete. We refer below to this consumption decision as the round iii

decision. It proves useful to �rst consider the optimal choices of Td;t and Cd;t before examining how Sid;t and

Siid;t are determined.

De�ne W i
d;t = Bid;t + S

i
tB̂

i
d;t as the dollar wealth of dealer d at the start of round-i in period t; :where S

i
t

A4



is the price quoted by other dealers. The trading problem facing dealer d in round ii can be written as

V(W ii
d;t; B̂

ii
d;t) = max

Td;t
E[V(W iii

d;t; B̂
iii
d;t)j
iid;t] (A11)

s.t. W iii
d;t = W ii

d;t + (S
ii
d;t � Siit )T iid;t; and B̂iiid;t = B̂iid;t + Td;t � T iid;t:

where V(W i
d; B̂

i
d) denotes the value function for the dealer de�ned over wealth, W

i
d; and euro bond holdings,

B̂id: Notice that T iid;t 62 
iid;t so the dealer�s choice of trade, Td;t; cannot be conditioned on incoming orders
from other dealers, T iid;t; (i.e., interdealer trade takes place simultaneously). In round iii dealers choose
consumption so solve

V(W iii
d;t; B̂

iii
d;t) = max

Cd;t

n
1

1�
C
1�

d;t + �E[V(W i

d;t+1; B̂
i
d;t+1)j
iid;t; B̂iiid;t]

o
(A12)

s.t. W i
d;t+1 = Rt(W

iii
d;t � PtCdt) +

�
Sit+1R̂t �RtSiit

�
B̂iiid;t; and B̂id;t+1 = R̂tB̂

iii
d;t:

The �rst-order conditions associated with the problems in (A11) and (A12) are

0 = E[V2(W iii
d;t; B̂

iii
d;t)j
iid;t]; and (A13)

C�
d;t = �RtPtE[V1(W i
d;t+1; B̂

i
d;t+1)j
iid;t; B̂iiid;t]; (A14)

where Vi(:; :) denotes the i0th. partial derivative of the dealer�s value function.
Next, we consider the quote problems facing the dealer at the start of round i and ii. The round i problem

can be written as

V(W i
d;t; B̂

i
d;t) = max

Sid;t

E[V(W ii
d;t; B̂

ii
d;t)j
id;t] (A15)

s.t. W ii
d;t = W i

d;t + (S
ii
t � Sit)(B̂id;t � T id;t) + (Sid;t � Sit)T id;t; and B̂iid;t = B̂id;t � T id;t;

and the round ii problem as

V(W ii
d;t; B̂

ii
d;t) = max

Siid;t

E[V(W iii
d;t; B̂

iii
d;t)j
iid;t] (A16)

s.t. W iii
d;t = W ii

d;t + (S
ii
d;t � Siit )T iid;t; and B̂iiid;t = B̂iid;t + Td;t � T iid;t:

Recall that all dealers choose quotes simultaneously, so the choice of Sid;t cannot be conditioned on the

quotes of other dealers, i.e., Sin;t for n 6= d and i = fi,ii}. Furthermore, quotes are good for any amount
and are available to all households in round i, and all dealers in round ii. Consequently, (Sid;t � Sit)T id;t
will have a limiting value of �1 if Sid;t di¤ers from Sit in trading round i = fi,ii}: We establish below that
E[V1(W ii

d;t; B̂
ii
d;t)j
id;t] and E[V1(W iii

d;t; B̂
iii
d;t)j
iid;t] are positive so dealers must quote a common price in each

trading round, i.e., Sid;t = Sit and S
ii
d;t = Siit :

Now we turn to the determination of Sit and S
ii
t : A dealer will only be willing to quote at the beginning of

each trading round if doing so does not reduce his expected utility. In round ii trading, the marginal utility

associated with incoming orders, T iid;t; is

E[V1(W iii
d;t; B̂

iii
d;t)(S

ii
d;t � Siit )� V2(W iii

d;t; B̂
iii
d;t)j
iid;t]:
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This term equals zero when Siid;t = Siit and round ii trades are chosen optimally satisfying (A13). Thus,

incoming orders from other dealers have no e¤ect on the dealers�expected utility at the margin provided he

has the opportunity to initiate trades and quotes a common price to avoid arbitrage.

In round i, the marginal utility associated with incoming orders, T id;t; is zero when

0 = E[V1(W ii
d;t; B̂

ii
d;t)[(S

i
d;t � Sit)� (Siit � Sit)]� V2(W ii

d;t; B̂
ii
d;t)j
iid;t]:

Applying the no-arbitrage restriction of common round i quotes, and substituting the envelope condition

V2(W ii
d;t; B̂

ii
d;t) = E[V2(W iii

d;t; B̂
iii
d;t)j
iid;t] from problem (A11) gives

0 = E[V1(W ii
d;t; B̂

ii
d;t)(S

ii
t � Sit) + V2(W iii

d;t; B̂
iii
d;t)j
iid;t];

= (Siit � Sit)E[V1(W ii
d;t; B̂

ii
d;t)j
iid;t];

where the second line follows from (A13) and the fact that both Siit and Sit are a function of common

information 
dt � 
iid;t: Thus dealers will not be made worse o¤ at the margin by incoming orders during

round i trading if the common quote is the same in each round: Sit = Siit = St:

Finally, we determine the value of St:With Sid;t = Sit = St for i = fi,ii}, it is straightforward to establish
that

V1(W i
d;t; B̂

i
d;t) = E[V1(W ii

d;t; B̂
ii
d;t)j
id;t] = E[V1(W iii

d;t; B̂
iii
d;t)j
id;t];

V1(W ii
d;t; B̂

ii
d;t) = E[V1(W iii

d;t; B̂
iii
d;t)j
iid;t]; and

V1(W iii
d;t; B̂

iii
d;t) = �RtE[V1(W i

d;t+1; B̂
i
d;t+1)j
iid;t; B̂�d;t]:

Hence, the �rst order condition in (A12) implies that

C�
d;t = V1(W
iii
d;t; B̂

iii
d;t)Pt: (A17)

Consequently,

E[V1(W iii
d;t; B̂

iii
d;t)j
id;t] = E[C

�

d;t =Ptj


i
d;t] > 0; and E[V1(W iii

d;t; B̂
iii
d;t)j
iid;t] = E[C

�

d;t =Ptj


ii
d;t] > 0;

as noted above. We also have

V2(W i
d;t; B̂

i
d;t) = E

h
E[V2(W iii

d;t; B̂
iii
d;t)j
iid;t]

���
id;ti+ (Siit � Sit)E[V1(W ii
d;t; B̂

ii
d;t)j
id;t]; and (A18)

V2(W iii
d;t; B̂

iii
d;t) = �E

h
V1(W i

d;t+1; B̂
i
d;t+1)(S

i
t+1R̂t �RtSiit )

��� j
iid;t; B̂�d;ti
+�R̂tE[V2(W i

d;t+1; B̂
i
d;t+1)j
iid;t; B̂�d;t]: (A19)

When Siit = Sit; (A18) and (A13) imply that V2(W i
d;t; B̂

i
d;t) = 0: Using this result and the fact that

V1(W i
d;t+1; B̂

i
d;t+1) = E[V1(W iii

d;t+1; B̂
iii
d;t+1)j
id;t+1]; (A19) becomes

V2(W iii
d;t; B̂

iii
d;t) = �E

h
V1(W iii

d;t+1; B̂
iii
d;t+1)(St+1R̂t �RtSt)j
iid;t; B̂�d;t

i
: (A20)
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Taking expectations conditioned on 
dt ; using (A13) and the law of iterated expectations, we get

St =
R̂t
Rt

E[V1(W iii
d;t+1; B̂

iii
d;t+1)St+1j
dt ]

E[V1(W iii
d;t+1; B̂

iii
d;t+1)j
dt ]

: (A21)

Equation (A21) identi�es the price at which dealers are willing to �ll incoming orders for euros in rounds

i and ii based on common information, 
dt , and the trading environment of our model. To gain more

perspective on its implications, we take a log-normal approximation to (A21):

E[st+1 � stj
dt ] + r̂t � rt =  ; (A22)

where  � �Vdt (st+1) � CVdt ( lnV1(W iii
d;t+1; B̂

iii
d;t+1); st+1): This is the form of equation (13) in the text. It

says that log spot rate, st; implied by the common dealer quotes must be such that the expected log excess

return based on 
dt compensates the dealers for �lling incoming euro orders from households and other

dealers.

Finally, we consider the consumption and trading decisions of each dealer. Combining the �rst-order

condition in (A14) with our results on the marginal utility of wealth gives

C�
d;t = �RtE[C�
d;t+1(Pt=Pt+1)j

ii
d;t; B̂

iii
d;t]: (A23)

This is the standard consumption-Euler equation. Notice, however, that dealers can condition their period-t

choices on their holdings of euro bonds after round ii is complete, i.e., B̂iiid;t: The optimal choice of round

ii trade, Td;t; is governed by the �rst-order condition in (A13). Combining this expression with (A20) and

(A17) gives

0 = �E
��

Cd;t+1
Cd;t

��

Pt
Pt+1

�
St+1R̂t �RtSt

�����
iid;t� : (A24)

This equation takes the form of a standard �rst-order condition governing the portfolio choice between dollar

and euro bonds.

A.1.4 Equilibrium

An equilibrium in this model is described by: (i) the consumption and portfolio decisions of households, (ii)

the price-setting decisions of �rms, (iii) the interest rate decisions of central banks, (iv) the quote, trade and

consumption decisions of dealers, consistent with market clearing in the equity, bonds, money and goods

markets. Assumptions A1 and A2 imply that all the equities issued by US and European �rms are held by

the domestic representative household. Thus market clearing implies that the ex-dividend prices of us and

eu equity, Qt and Q̂t satisfy

us equity : Qt +Dt = PtQust ; and

eu equity : Q̂t + D̂t = P̂tQeut ;

where Qit is the value of the real dividend stream of �rm i = fus,eu} to domestic households under an
optimal price-setting policy. Market clearing also implies that the optimal share of equities in households�
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portfolios satisfy

�qtWh;t = Qt; and �̂qtWh;t = Q̂t;

because the number of outstanding shares issued by each �rm is normalized to one.

Market clearing in the euro bond market requires that the dollar value of aggregate euro orders received

by dealers in round i trading equal aggregate household order �ow:

dX
d=1

StT id;t = xt:

In round ii all trading takes place between dealers. Hence, the dollar value of incoming orders for euros

received by all dealers must equal the aggregate dealer order �ow:

dX
d=1

StT iid;t =
dX
d=1

StTd;t:

At the end of each period, the aggregate holdings of euro bonds by us households, B̂h,t; eu households,

B̂bh,t; and non-households (i.e. dealers and central banks), B̂t; must sum to zero:

B̂h,t + B̂bh,t + B̂t = 0:
In the money markets, central banks accommodate households�demand for currency at a chosen nominal

interest rate. These interest rates are set as

fed : rt =
1
� f$ + E

fed
t [pt + ct �mt]g = 1

� f$ + pt + E
fed
t ct �m�

t g ; and

ecb : r̂t =
1
� f$ + E

ecb
t [p̂t + ĉt � m̂t]g = 1

� f$ + p̂t + E
ecb
t ĉt � m̂�

t g :

Market clearing in goods markets is demand-determined in each national market given the prices chosen by

�rms. Aggregate us consumption comprises the consumption of us households and dealers: Ct = Ch;t+Pd
d=1 Cd;t where Ch;t �

R 1=2
0

Ch;tdh: Aggregate eu consumption comprises the consumption of eu households

Ĉt = Ĉbh;t � R 11=2 Ĉh;tdh: The implications of price-setting for dividends via their e¤ect on consumer demand
are incorporated into the �rms�decision-making problems.

A.2 Proofs of Propositions

Proposition 1 Consider the expected demand for money by us and eu households implied by (A5) and

(A9) given prices and interest rates, conditioned on dealers�common information, 
dt :

Edtmh;t � pt = $ + Edt ch;t � �rt; (A25a)

Edt m̂bh;t � p̂t = $ + Edt ĉbh;t � �r̂t; (A25b)

If 
dt is a subset of the period�t information available to the fed and the ecb, Edtmh;t = EdtEfedt mh;t and

Edt m̂bh;t = EdtEecbt m̂bh;t by iterated expectations. Combining (A25) with these restrictions and the central
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banks�policy rules gives

Edtm�
t � pt = $ + Edt ch;t � �rt; (A26a)

Edt m̂�
t � p̂t = $ + Edt ĉbh;t � �r̂t: (A26b)

To derive equation (11), we �rst use (A26) to substitute for rt and r̂t in (A22). This gives

st =
�
1+�E

d
t st+1 +

1
1+�E

d
t ft; (A27)

where fundamentals, ft; are de�ned in (12). Solving this equation forward and applying the law of iterated

expectations gives (11). Notice that if Edtmh;t 6= EdtEfedt mh;t and Edt m̂bh;t 6= EdtEecbt m̂bh;t; because central
banks have less information than dealers, we still get (A27) from (A25) and (A22), but fundamentals depend

on mh;t � m̂bh;t rather than m�
t � m̂�

t : The present value expression for the log spot rate is therefore robust

to di¤erent information assumptions regarding dealers and central banks provided we adjust the de�nition

of fundamentals accordingly.

Proposition 2 Let erqt+1 � rqt+1 � rt +
1
2V

h
t (r

q
t+1) �  qh;t be the risk adjusted log excess return on us

equities. We may now rewrite the portfolio allocation equation in (A4) as

�t = �
h
t

�
Eht�st+1 + r̂t � rt + 1

2V
h
t (st+1)�  sh;t

�
�	htEht erqt+1; (A28)

where �ht � �

V

h
t (r

q
t+1)=j�ht j and 	ht �

�

CV

h
t (r

q
t+1; st+1)=j�ht j: Households know that dealers quote spot

rates in accordance with (11). So the expected excess return on euro bonds can be written as

Eht�st+1 + r̂t � rt = Edt�st+1 + r̂t � rt +rEht st+1 = rEht st+1 +  :

Combining this expression with (A28) gives us

�t = �
h
trEht st+1 �	htEht erqt+1 +�ht

�
1
2V

h
t (st+1) +  �  sh;t

�
: (A29)

In the case of European households, their desired share of wealth held in euro bonds, �̂t; is by de�nition

equal to 1� ~�t � �̂qt � (P̂tĈbh,t + M̂bh,t)=Ŵbh,t: Substituting for ~�t and �̂at from (A8), P̂tĈbh,t=Ŵbh,t from (A10)

and M̂bh,t=Ŵbh,t from (A9) in this de�nition gives

�̂t = 1+�
bh
t (E

bh
t�st+1+r̂t�rt� 1

2V
bh
t (�st+1)+ 

�sbh;t)�	bhtEbht erbqt+1�exp(ĉbh;t+p̂t�ŵbh;t)(1+exp ($ � �r̂t)) (A30)
where �bht � �


 (V
bh
t (r

bq
t+1)+�

bh
tVbht (rbqt+1))=j�̂bht j and 	bht � �


 (V
bh
t (st+1)+�

bh
tVbht (rbqt+1))=j�̂bht j. Proceeding as above,

we obtain

�̂t = 1 +�
bh
trE

bh
t st+1 �	

bh
tE

bh
t er

bq
t+1 +�

bh
t

�
 �sbh;t +  � 1

2V
bh
t (st+1)

�
� exp(ĉbh;t + p̂t � ŵbh;t)(1 + exp ($ � �r̂t)):

(A31)

Equations (A29) and (A31) show that the desired portfolio shares for euro bonds depend on: (i) the di¤erence

in expectations regarding future spot rates between the households and dealers, (ii) the risk adjusted expected

excess return on equities, (iii) risk premia; and in the case of European households; the consumption wealth
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and money wealth ratios. Substituting the expressions for �t and �̂t in the order �ow equation (16), and

linearizing around a symmetric steady state where expectations of dealers and households are the same gives

(17).

Proposition 3 Let 
ht = f
dt ; �tg for some vector of variables �t so that 
dt � 
ht : From Bayesian updating
we known that

E [{t+1j
!t ; �t] = E [{t+1j
!t ] + B{;v (�t � E [�tj
!t ]) ; (A32)

B{;v = V!t (�t)
�1 CV!t ({t+1; �t):

for some random variable {t+1 and information set 
!t : Applying this equation in the case where {t+1 =
E[yt+1j
dt+1]; 
!t = 
dt ; and 
ht = f
dt ; �tg; gives

EhtEdt+1yt+1 � Edt yt+1 = BEdt+1yt+1;�t(�t � E[�tj

d
t ]):

In the case where {t+1 = yt+1; 
!t = 
dt ; and 
ht = f
dt ; �tg we get:

Ehtyt+1 � Edt yt+1 = Byt+1;�t(�t � E[�tj
dt ]):

Combining these equations we obtain:

EhtEdt+1yt+1 � Edt yt+1 = �(Ehtyt+1 � Edt yt+1); (A33)

where � � BEdt+1yt+1;�t(B
0
yt+1;�tByt+1;�t)

�1B0yt+1;�t :

Now we combine (20) and (A33) to give rEht st+1 = ��rEhtyt+1 which is (21a). Applying the same technique
to the foreign forecast di¤erential gives rEbht st+1 = ��̂rEbhtyt+1 where �̂ is the foreign counterpart of �: This
is equation (21b). Substitution for rEht st+1 and rEbht st+1 in (17) with these expressions gives (22).
Proposition 4 First we use (A32) with yt+1 = {t+1; 
!t = 
dt ; and 
dt+1 = f
dt ; �tg to give

Edt+1yt+1 � Edt yt+1 = Byt+1;�t(�t � E[�tj
dt ]):

Next we combine this expression with (26):

�st+1 = rt � r̂t +  + �Byt+1;�t(�t � E[�tj
dt ]):

Now note that the vector �t denotes the new information available to dealers between the start of periods t

and t+ 1. Thus, period t order �ow xt is an element of �t: We can therefore write:

�st+1 = rt � r̂t +  + b(xt � Edt xt) + �t+1

where b = �Byt+1;xt and �t+1 denotes the e¤ect of other elements in �t that are uncorrelated with order
�ow. To see how the correlation between order �ow and spot rates depends on the degree of information
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aggregation, we simply use (22) to substitute for xt in the de�nition of Byt+1;xt : In particular, we �rst write

�Byt+1;xtVdt:(xt) = ��CVdt:
�
yt+1;rEhty0t+1

�
�0�0 + �̂�CVdt:

�
yt+1;rEbhty0t+1

�
�̂0�0 + �CVdt: (yt+1; ot) ;

and use the identity yt+1 � Edt yt+1 + E!t yt+1 � Edt yt+1 + (yt+1 � E!t yt+1) for ! = fh,bh} to give
b = Vdt:(xt)�1

�
��Vdt:(rEhtyt+1)�0�0 + �̂�Vdt:(rE

bh
tyt+1)�̂

0�0
�
+ Vdt:(xt)�1�CV

d
t: (yt+1; ot) :

Proposition 5 Consider the projection of �ft+� on st � Edt ft and the unexpected component of order
�ow xt � Edt xt:

�ft+� = �s (st � Edt ft) + �x (xt � Edt xt) + �t+� :

Order �ow has incremental forecasting power when �x di¤ers from zero. To show that this is indeed the

case, we �rst note that �x (xt � Edt xt)+ �t+� must equal the projection error in (30), "t+� ; because xt�Edt xt
is uncorrelated with st � Edt ft: Consequently, �s takes the same value as it did in (30) and:

�x =
CV (�ft+� ; xt � Edt xt)

V (xt � Edt xt)
:

Using the identity �ft+� � rE!t �ft+� + Edt�ft+� +(�ft+� � E!t �ft+� ) for ! = fh,bhg to substitute for
�ft+� ; and (22) to substitute for order �ow, we �nd that

�x =
���CV (rEhtyt+1;rEht�ft+� ) + �̂��̂CV

�
rEbhtyt+1;rEbht�ft+�

�
+ CV (ot;�ft+� )

V (xt � Edt xt)
:

The �nal step is to substitute for �ft+� using the fact that ft = Cyt:

Proposition 6 First we iterate (A27) forward � periods to get

st =
1

1+�E
d
t

��1X
i=0

( �
1+� )

ift+i + (
�
1+� )

�Edt st+� :

Subtracting ( �
1+� )

�st from both sides and re-arranging gives

Edt��st+� =
�
( 1+�� )

� � 1
�
st � ( 1+�� )

� 1
1+�E

d
t

��1X
i=0

( �
1+� )

ift+i:

Combining this equation with the identity ��st+� = Edt��st+� + st+� � Edt st+� ; we �nd that

��st+� =
�
( 1+�� )

� � 1
�
st � ( 1+�� )

� 1
1+�E

d
t

��1X
i=0

( �
1+� )

ift+i + st+� � Edt st+� ;

= '� (st � Edt ft;� ) + st+� � Edt st+� ;

where '� � ( 1+�� )
� � 1 > 0 and ft;� � '�+1

'� (1+�)

P��1
i=0 (

�
1+� )

ift+i: Using (11) to substitute for st+� � Edt st+�
gives equation (33).
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A.3 Real-Time Estimates

We provide a brief description of how we computed the real-time estimates of a monthly log series {.
Computing the real-time estimates for a quarterly series like GDP follows analogously and is described in

detail by Evans (2005). Let �{t denote the increment to the monthly value for {m(�); where m(�) is the last
date of month � : Next, de�ne the partial sum

g�{t � minfm(�);tgX
i=m(��1)+1

�{t

as the cumulative daily contribution to {m(�) in month � : Notice that when t = m(�); the monthly change

in {m(�); �m{q(�) =g�{m(�): The daily dynamics of g�{t are described by
g�{t = (1� dumt)g�{t�1 +�{t; (A34)

where dumt is a dummy variable equal to one on the �rst day of each month, and zero otherwise. To

accommodates the presence of variable reporting lags, let �m(j){t denote the monthly growth in { ending
on day m(� � j) where m(�) denotes the last day of the most recently completed month and t � m(�):

Monthly growth in the last (completed) month is given by

�m(1){t = (1� dumt)�
m(1){t�1 + dumt

g�{t�1: (A35)

When t is the �rst day of a new month, dumt = 1; so �m(1){m(�)+1 =g�{m(�) = �m{m(�): On all other days,
�m(1){t = �m(1){t�1: To accommodate occasions where the reporting lag is more than a month, we track
monthly growth two months back via the recursion:

�m(2){t = (1� dumt)�
m(2){t�1 + dumt�

m(1)xt�1: (A36)

Equations (A34), (A35) and (A36) enable us to de�ne the link between the daily contributions, �{t; and
data releases. Suppose the reporting lag for the release on day t is less than one month. Then if d�{t is the
released value for the growth in { during the last month on day t;

d�{t = �m(1){t: (A37)

If the reporting lag is longer than a month (but less than two),

d�{t = �m(2){t: (A38)

We incorporate the information contained in the monthly data releases on other variables is a similar man-

ner. (Incorporating information from quarterly data releases is more complex, see Evans 2005 for details.)

Speci�cally, let zit denote the value of another series, released on day t, that relates to activity in the last

completed month. We assume that

zit = �i�
m(1){t + uit: (A39)
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where uit is an i.i.d.N(0; �
2
i ) shock. In cases where the reporting lag is two months,

zit = �i�
m(2){t + uit: (A40)

It is important to recognize that (A37) - (A40) allows for variations in the reporting lag from data release

to data release.

To complete the model, we specify the dynamics for the daily increments, �{t: We assume that

�{t =
kX
i=1

�i�
m(i){t + �t; (A41)

where �t is an i.i.d.N(0; �
2
�) shock.

Finding the real time estimates of { requires a solution to two related problems. First, there is a pure
inference problem of how to compute E[{m(�)j
t] using the signalling equations (A37) - (A40), and the �{t
process in (A41), given values for all the parameters in these equations. Second, we need to estimate these

parameters. The Kalman Filtering algorithm provides a solution to both problems. In particular, given a set

of parameter values, the algorithm provides the means to compute the real-time estimates E[{m(�)j
t]: The
algorithm also allows us to construct a sample likelihood function from the data series, so that the model�s

parameters can be computed by maximum likelihood.

To use the algorithm, we write the model in state space form. For the case where k = 1; the dynamics

described by equations (A34) - (A36) and (A41) can be represented by the matrix equation:26664
g�{t

�m(1){t
�m(2){t
�{t

37775 =
26664
1� dumt 0 0 1

dumt 1� dumt 0 0

0 dumt 1� dumt 0

0 �1 0 0

37775
26664

g�{t�1
�m(1){t�1
�m(2){t�1
�{t�1

37775+
26664
0

0

0

�t

37775 ;
or, more compactly

Zt = AtZt�1 + Vt: (A42)

This is the state equation of the state space form.

The link between the data releases on { and the elements of Zt are described by (A37) and (A38):

d�{t = h 0 ml1t ({) ml2t ({) 0
i
Zt; (A43)

where mlit({) denotes a dummy variable that takes the value of one when the reporting lag for series {
lies between i� 1 and i months, and zero otherwise. The link between the releases for the other series and
elements of Zt are described by (A39) and (A40):

zit =
h
0 �iml

1
t (z

i) �iml
2
t (z

i) 0
i
Zt + uit: (A44)
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Stacking (A43) and (A44) for series i = 1; 2:::; g gives266664
d�{t
z1t
...

zgt

377775 =
266664
0 ml1t ({̂) ml2t ({̂) 0

0 �iml
1
t (z

1) �1ml
2
t (z

1) 0
...

...
...

...

0 �gml
1
t (z

g) �gml
2
t (z

g) 0

377775Zt +
266664
0

u1t
...

ugt

377775 ;
or

Xt = CtZt + Ut: (A45)

This equation links the vector of potential data releases for day t; Xt; to elements of Zt: The vector of actual
data releases for day t; Yt; is related to the vector of potential releases by

Yt = BtXt;

where Bt is a n� (g + 1) selection matrix that �picks out�the n � 1 data releases for day t: Combining this
expression with (A45) gives us the observation equation:

Yt = BtCtZt + BtUt: (A46)

Equations (A42) and (A46) describe a state space form which can be used to �nd real-time estimates of

variable { in two steps. In the �rst, we obtain the maximum likelihood estimates of the model�s parameters.

For this purpose the sample likelihood function is built up recursively by applying the Kalman Filter to

(A42) and (A46). The second step applies the Kalman Filter to (A42) and (A46) to calculate the real-time

estimates of { using the maximum likelihood parameter estimates:

The real-time estimates for US variables use data releases on quarterly GDP and 18 monthly releases:

Nonfarm Payroll, Employment, Retail Sales, Industrial Production, Capacity Utilization, Personal Income,

Consumer Credit, Personal Consumption Expenditures, New Home Sales, Durable Goods Orders, Construc-

tion Spending, Factory Orders, Business Inventories, the Government Budget De�cit, the Trade Balance,

NAPM index, Housing Starts, the Index of Leading Indicators, Consumer Prices and M1. The real-time

estimates for German variables use data releases on quarterly GDP and 8 monthly releases: Employment,

Retail Sales, Industrial Production, Manufacturing Output, Manufacturing Orders, the Trade Balance, Con-

sumer Prices and M1. We allow for 10 lags in the daily increment process when estimating real-time GDP,

and 7 lags for the other variables. These speci�cations appear to capture all the time-series variation in the

data. In particular, we are unable to reject the null hypothesis of no serial correlation in the Kalman Filter

innovations evaluated at the maximum likelihood estimates for any of our models.
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