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Abstract

Here are brief solutions to the problems.

Recall that a poset (partially ordered set) is a pair (P,≥), where P is
a nonempty set and ≥ is a relation on P satisfying the two properties P1:
x ≥ y and y ≥ x if and only if x = y and P2: x ≥ y, y ≥ z implies x ≥ z.

Exercise 1 Show that in a poset, any zero-object is unique.

Proof. This is a variant of the argument that identities are unique. Let 0, 0′

be two zero-objects in a poset. Then each is greater than or equal to the
other so by property P1, they are equal. 2

A boolean algebra is a lattice with 0 and 1 which is distributive and com-
plemented. For example, the family of all subsets of a given set S, with
inclusion as the order relation, defines a lattice with S as the 1-object (ev-
erything is a subset of S) and the empty set ∅ as the 0-object. Complements
are just set-theoretic complement and ∪ (join or lub) means union, while ∩
(meet or glb) means intersection. The distributive law holds for the lattice
of subsets of S since A∩ (B ∪C) ⊆ (A∩B)∪ (A∩C). Indeed, any element
in the LHS is in A and in either B or C. In the first case, it is in A∩B, etc.
(The opposite inclusion is trivial since A ∩ C ⊆ A ∩ (B ∪ C), etc.)
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Exercise 2 Show that, in a boolean algebra, the complement of any element
is unique. After this, we will denote the complement of a by a′.

Proof. If B is a boolean algebra and if x and y are both complements to a;
i.e., a∪ x = 1 = a∪ y and a∩ x = 0 = a∩ y, then (using the distributive law
for the third equality)

y = y ∩ 1 = y ∩ (a ∪ x) = (y ∩ a) ∪ (y ∩ x) = 0 ∪ (y ∩ x) = x ∩ y.

By symmetry, x ∩ y = y ∩ x = x so y = x. Hence, the complement of an
element is unique. 2

A ring R is called a boolean ring provided that x2 = x for every element
x in R (i.e., every element is multiplicatively idempotent). We dealt with
boolean rings on the Midterm, where it was shown that a boolean ring is
automatically commutative and of characteristic 2 so x + x = 0 for every
x ∈ R.

Given a boolean algebra, we can form a boolean ring from it in the fol-
lowing way: Let R = B, define multiplication in R to be ∩ in B. By L3
(in the written notes) a ∩ a = a for any lattice - indeed, the glb of a with
itself is clearly again a. The addition for R is a bit less obvious. Define,
for all x, y ∈ R, x + y = (x ∩ y′) ∪ (x′ ∩ y). It is straightforward, though
not trivial, to check that with · = ∩ and + as just given, R is a ring. By
L3, R is a boolean ring and moreover R has 1 for its multiplicative identity
(since 1 ∩ x = x for all x). In the notes we showed that one can also write
x + y = (x ∪ y) ∩ (x ∩ y)′. For the boolean algebra formed from the subsets
of S, the corresponding ring-sum is called symmetric difference of sets.

One can show that the converse holds. That is, if R is any boolean ring
with identity, there is a boolean algebra B such that R is obtained from B
by the process described in the preceding paragraph. Of course, we take
B = R as underlying sets and define x ∩ y in B to be xy in R - meet and
multiplication are the same. Put x∪ y = x + y− xy. We actually verified in
class that this operation gives an associative operation in any ring with 0 as
neutral element.

There are other things to check (i.e., L1 to L4), but I’m only asking
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Exercise 3 Show that B is distributive: Prove that for all a, b, c in B

(a ∪ b) ∩ c = (a ∩ c) ∪ (b ∩ c).

Proof. By definition, (a ∪ b) ∩ c = (a + b− ab)c and by the distributive law
for rings, this equals ac+bc−abc, while (a∩c)∪ (b∩c) = ac+bc− (ac)(bc) =
ac + bc− abcc = ac + bc− abc, where the last two equalities use the fact that
B is commutative and multiplicatively idempotent. 2

Here is a connection with logic. Let B be a set of logical propositions
(either true or false) which is closed under formation of “and” and “or” - e.g.,
the statement “P or Q” is true if and only if either P or Q is true. Calling
these operations meet and join, respectively, makes B into a lattice.

Exercise 4 Determine the corresponding order relation?

The order associated with lattices defined by meet and join (i.e., sets and
binary operations which satisfy L1, ... , L4) is given by a ≥ b if and only
if a ∪ b = a. Now it is easy to check (using the definition of “or”) that the
equality a ∪ b = a is false if and only if a is false but b is true, and this is
also the only way in which the implication b ⇒ a is false. Thus, b ≤ a is the
same as saying that b logically implies a. Note that transitivity (P2) clearly
holds for logical implication, but we should actually replace statements by
equivalence classes of statements to guarantee that P1 holds as well. In
particular, a statement which is false logically implies any other statement
so False corresponds to 0 and similarly True corresponds to 1.
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