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Abstract

It is shown that for any positive integer n and any function in Lp([0, 1]d) with
p ∈ [1,∞) there exists a best approximation by linear combinations of n characteristic
functions of half-spaces. Further, sequences of such linear combinations converging in
distance to the best approximation distance have subsequences converging to the best
approximation, i.e., these linear combinations are an approximatively compact set.

Keywords. Best approximation, proximinal, approximatively compact, boundedly
compact, Heaviside perceptron networks, plane waves.
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1 Introduction

An important type of nonlinear approximation is variable-basis approximation, where the
set of approximating functions is formed by linear combinations of n functions from a given
set. This approximation scheme has been widely investigated: it includes splines with free
nodes, trigonometric polynomials with free frequencies, sums of wavelets, and feedforward
neural networks.

To estimate rates of variable-basis approximation, it is helpful to study properties like
existence, uniqueness, and continuity of corresponding approximation operators.

Here we investigate the existence property for one-hidden-layer Heaviside perceptron
networks, i.e., approximations by linear combinations of characteristic functions of closed
half-spaces. Such functions are obtained by composing the Heaviside function with affine
functions. We show that for all positive integers n, d in Lp([0, 1]d) with p ∈ [1,∞) there
exists a best approximation mapping to the set of functions computable by Heaviside per-
ceptron networks with n hidden and d input units. Thus for any p-integrable function on
[0, 1]d there is a linear combination of n characteristic functions of closed half-spaces that
is nearest in the Lp-norm. A related proposition is proved by Chui, Li, and Mhaskar in [1],
where certain sequences are shown to have subsequences that converge a. e. These authors
work in Rd rather than [0, 1]d and show a. e. convergence rather than Lp convergence.

2 Heaviside perceptron networks

Feedforward networks compute parametrized sets of functions dependent both on the type
of computational units and their interconnections. Computational units compute functions
of two vector variables: an input vector and a parameter vector. A standard type of compu-
tational unit is the perceptron. A perceptron with an activation function ψ : R→ R (where
R denotes the set of real numbers) computes real-valued functions on Rd × Rd+1 of the
form ψ(v · x + b), where x ∈ Rd is an input vector, v ∈ Rd is an input weight vector, and
b ∈ R is a bias.

The most common activation functions are sigmoidals, i.e., functions with ess-shaped
graph. Both continuous and discontinuous sigmoidals are used. Here we study networks
based on the archetypal discontinuous sigmoidal, namely, the Heaviside function ϑ defined
by ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 0.

Let Hd denote the set of functions on [0, 1]d computable by Heaviside perceptrons, i.e.,

Hd = {f : [0, 1]d → R : f(x) = ϑ(v · x + b),v ∈ Rd, b ∈ R}.
Hd is the set of characteristic functions of closed half-spaces of Rd restricted to [0, 1]d, which
is a subset of the set of plane waves (see, e.g., Courant and Hilbert [2, pp.676–681]). For
A ⊆ Rd we denote by ξA the characteristic function of A, i.e., ξA(x) = 1 for x ∈ A and
χA(x) = 0 for x /∈ A.

The simplest type of multilayer feedforward network has one hidden layer and one linear
output. Such networks with Heaviside perceptrons in the hidden layer compute functions
of the form

n∑

i=1

wiϑ(vi · x + bi),

where n is the number of hidden units, wi ∈ R are output weights, and vi ∈ Rd and bi ∈ R
are input weights and biases respectively.
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The set of all such functions is the set of all linear combinations of n elements of Hd

and is denoted by spannHd.
It is known that for all positive integers d, ∪n∈N+spannHd (where N+ denotes the set of

all positive integers) is dense in (C([0, 1]d), ‖.‖C), the linear space of all continuous functions
on [0, 1]d with the supremum norm, as well as in (Lp([0, 1]d), ‖.‖p) with p ∈ [1,∞] (see, e.g.,
Mhaskar and Micchelli [10] or Leshno et al. [9]). We study best approximation in spannHd

for a fixed n.

3 Existence of a best approximation

Existence of a best approximation has been formalized in approximation theory by the
concept of proximinal set (sometimes also called “existence” set). A subset M of a normed
linear space (X, ‖.‖) is called proximinal if for every f ∈ X the distance ‖f − M‖ =
infg∈M ‖f − g‖ is achieved for some element of M , i.e., ‖f −M‖ = ming∈M ‖f − g‖ (Singer
[13]). Clearly a proximinal subset must be closed.

A sufficient condition for proximinality of a subset M of a normed linear space (X, ‖.‖)
is compactness (i.e., each sequence of elements of M has a subsequence convergent to an
element of M). Indeed, for each f ∈ X the functional e{f} : M → R defined by e{f}(m) =
‖m− f‖ is continuous [13, p. 391] and hence must achieve its minimum on any compact set
M .

Gurvits and Koiran [5] have shown that for all positive integers d the set of characteristic
functions of half-spaces Hd is compact in (Lp([0, 1]d), ‖.‖p) with p ∈ [1,∞). This can
be easily verified once the set Hd is reparametrized by elements of the unit sphere Sd in
Rd+1. Indeed, a function ϑ(v · x + b), with the vector (v1, . . . , vd, b) ∈ Rd+1 nonzero, is
equal to ϑ(v̂ · x + b̂), where (v̂1, . . . , v̂d, b̂) ∈ Sd is obtained from (v1, . . . , vd, b) ∈ Rd+1

by normalization. Strictly speaking, Hd is parametrized by equivalence classes in Sd since
different parametrizations may represent the same member of Hd when restricted to [0, 1]d.
Since Sd is compact, and the quotient space formed by the equivalence classes is likewise,
so is Hd.

However, by extending Hd into spannHd for any positive integer n we lose compactness
since the norms are not bounded. Nevertheless compactness can be replaced by a weaker
property that requires only some sequences to have convergent subsequences. A subset M
of a normed linear space (X, ‖.‖) is called approximatively compact if for each f ∈ X and
any sequence {gi : i ∈ N+} in M such that limi→∞ ‖f − gi‖ = ‖f −M‖, there exists g ∈ M
such that {gi : i ∈ N+} converges subsequentially to g [13, p.368].

The following theorem shows that spannHd is approximatively compact in Lp-spaces. It
extends a weaker result by Kůrková [8], who showed that spannHd is closed in Lp-spaces
with p ∈ (1,∞).

Theorem 3.1 For every n, d positive integers and for every p ∈ [1,∞) spannHd is an
approximatively compact subset of (Lp([0, 1]d, ‖.‖p).

To prove the theorem we need the following lemma. For a set A P(A) denotes the set
of all subsets of A.

Lemma 3.2 Let m be a positive integer, {ajk : k ∈ N+, j = 1, . . . , m} be m sequences of
real numbers, and S ⊆ P({1, . . . ,m}) be such that for each S ∈ S limk→∞

∑
j∈S ajk = cS

for some cS ∈ R. Then there exist real numbers {aj : j = 1, . . . , m} such that for each
S ∈ S ∑

j∈S aj = cS.
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Proof. Let p = cardS and let S = {S1, . . . , Sp}. Define T : Rm →Rp by T (x1, . . . , xm) =
(
∑

j∈S1
xj , . . . ,

∑
j∈Sp

xj). Then T is linear, and hence its range is a subspace of Rp and so
is a closed set. Since (cS1 , . . . , cSp

) ∈ cl T (Rm) = T (Rm), there exists (a1, . . . , am) ∈ Rm

with (cS1 , . . . , cSp) = T (a1, . . . , am). 2

Proof of Theorem 3.1
Let f ∈ Lp([0, 1]d) and let {∑n

j=1 ajkgjk : k ∈ N+} be a sequence of elements of spannHd

such that limk→∞ ‖f −
∑n

j=1 ajkgjk‖p = ‖f − spannHd‖p. Since Hd is compact, by passing
to suitable subsequences we can assume that for all j = 1, . . . , n, there exist gj ∈ Hd such
that limk→∞ gjk = gj (here and in the sequel, we use the notation limk→∞ to mean a limit
of a suitable subsequence).

We shall show that there exist real numbers a1, . . . , an such that

‖f − spannHd‖p = ‖f −
n∑

j=1

ajgj‖p. (1)

Then using (1) we shall show even that {∑n
j=1 ajkgjk : k ∈ N+} converges to

∑n
j=1 ajgj in

‖.‖p subsequentially.
Decompose {1, . . . , n} into two disjoint subsets I and J such that I consists of those j

for which the sequences {ajk : k ∈ N+} have convergent subsequences, and J of those j for
which the sequences {|ajk| : k ∈ N+} diverge. Again, by passing to suitable subsequences
we can assume that for all j ∈ I, limk→∞ ajk = aj . Thus {∑j∈I ajkgjk : k ∈ N+} converges
subsequentially to

∑
j∈I ajgj .

Set h = f −∑
j∈I ajgj . Since for all j ∈ I, the chosen subsequences {ajk : k ∈ N+} and

{gjk : k ∈ N+} are bounded, we have ‖f − spannHd‖p = limk→∞ ‖f −
∑n

j=1 ajkgjk‖p =
limk→∞ ‖h−

∑
j∈J ajkgjk‖p.

Let S denotes the set of all subsets of J . Decompose S into two disjoint subsets S1

and S2 such that S1 consists of those S ∈ S for which by passage to suitable subse-
quences limk→∞

∑
j∈S ajk = cS for some cS ∈ R, and S2 consists of those S ∈ S for

which limk→∞ |
∑

j∈S ajk| = ∞. Note that the empty set is in S1 with the convention∑
j∈∅ ajk = 0.
Using Lemma 3.2, for all j ∈ ∪S1, we get aj ∈ R such that for all S ∈ S1,

∑
j∈S aj = cS .

For j ∈ J − ∪S1, set aj = 0.
Since

∑n
j=1 ajgj ∈ spannHd, we have ‖f − spannHd‖p ≤ ‖f −∑n

j=1 ajgj‖p and thus to
prove (1), it is sufficient to show that ‖f − spannHd‖p ≥ ‖f −∑n

j=1 ajgj‖p or equivalently

lim
k→∞

∫

[0,1]d

∣∣∣∣∣∣
h−

∑

j∈J

ajkgjk

∣∣∣∣∣∣

p

dµ ≥
∫

[0,1]d

∣∣∣∣∣∣
h−

∑

j∈J

ajgj

∣∣∣∣∣∣

p

dµ (2)

where µ is Lebesgue measure on [0, 1]d.
To verify (2), for each k ∈ N+ we shall decompose the integration over [0, 1]d into sum

of integrals over convex regions where the functions
∑

j∈J ajkgjk are constant. To describe
such regions, we shall define partitions of [0, 1]d determined by families of characteristic
functions {gjk : j ∈ J, k ∈ N+}, and {gj : j ∈ J}. The partitions are indexed by the
elements of the set S of all subsets of J . For k ∈ N+, a partition {Tk(S) : S ∈ S} is defined
by Tk(S) = {x ∈ [0, 1]d : (gjk(x) = 1 ⇔ j ∈ S)}, and similarly a partition {T (S) : S ∈ S} is
defined by T (S) = {x ∈ [0, 1]d : gj(x) = 1 ⇔ j ∈ S}. Notice that since for all j = 1, . . . , n,
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limk→∞ gjk = gj in Lp([0, 1]d), we have limk→∞ µ(Tk(S)) = µ(T (S)) for all S ∈ S. Indeed,
the characteristic function of Tk(S) equals the product

∏
j∈S gjk

∏
j /∈S(1−gjk) and converges

in Lp([0, 1]d) to the characteristic function of T (S), the latter equal to
∏

j∈S gj

∏
j /∈S(1−gj).

Using the definition of Tk(S) (in particular its property guaranteeing that for all S ∈ S,
Tk(S) is just the region where for all j ∈ S and no other j ∈ J , gjk is equal to 1), we get

lim
k→∞

∫

[0,1]d

∣∣∣∣∣∣
h−

∑

j∈J

ajkgjk

∣∣∣∣∣∣

p

dµ = lim
k→∞

∑

S∈S

∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

ajk

∣∣∣∣∣∣

p

dµ =

lim
k→∞


 ∑

S∈S1

∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

ajk

∣∣∣∣∣∣

p

dµ +
∑

S∈S2

∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

ajk

∣∣∣∣∣∣

p

dµ


 ≥

lim
k→∞

∑

S∈S1

∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

ajk

∣∣∣∣∣∣

p

dµ. (3)

Since for all S ∈ S, limk→∞ µ(Tk(S)) = µ(T (S)) and for all S ∈ S1, limk→∞
∑

j∈S ajk =
cS =

∑
j∈S aj , we have

lim
k→∞

∑

S∈S1

∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

ajk

∣∣∣∣∣∣

p

dµ = lim
k→∞

∑

S∈S1

∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

aj

∣∣∣∣∣∣

p

dµ =

∑

S∈S1

∫

T (S)

∣∣∣∣∣∣
h−

∑

j∈S

aj

∣∣∣∣∣∣

p

dµ.

For all S ∈ S, by the triangle inequality in Lp(Tk(S))

lim
k→∞




∫

Tk(S)

∣∣∣∣∣∣
∑

j∈S

ajk

∣∣∣∣∣∣

p

dµ




1/p

≤

lim
k→∞







∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

ajk

∣∣∣∣∣∣

p

dµ




1/p

+

(∫

Tk(S)

|h|pdµ

)1/p

 ≤

lim
k→∞




∫

[0,1]d

∣∣∣∣∣∣
h−

∑

j∈J

ajkgjk

∣∣∣∣∣∣

p

dµ




1/p

+

(∫

[0,1]d
|h|pdµ

)1/p

= ‖f − spannHd‖p + ‖h‖p.

Thus for all S ∈ S, limk→∞
∫

Tk(S)
|∑j∈S ajk|pdµ is finite. In particular this is true when

S ∈ S2, for which limk→∞ |
∑

j∈S ajk|p = ∞, and so limk→∞ µ(Tk(S)) = 0 = µ(T (S)) for
S ∈ S2. Thus we can replace the integration over ∪S∈S1T (S) by the integration over the
whole of [0, 1]d and so we obtain
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∑

S∈S1

∫

T (S)

∣∣∣∣∣∣
h−

∑

j∈S

aj

∣∣∣∣∣∣

p

dµ =
∫

[0,1]d

∣∣∣∣∣∣
h−

∑

j∈J

ajgj

∣∣∣∣∣∣

p

dµ,

which proves (2). Moreover, as a byproduct we even get that

lim
k→∞

∑

S∈S2

∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

ajk

∣∣∣∣∣∣

p

dµ = 0, (4)

since in (3) the left hand side is equal to the right hand side (both are equal to ‖f −
spannHd‖p).

So we have shown that spannHd is proximinal. Now we shall verify that it is even ap-
proximatively compact by showing that {∑j∈J ajkgjk : k ∈ N+} converges subsequentially
to

∑
j∈J ajgj , or equivalently

lim
k→∞

∫

[0,1]d

∣∣∣∣∣∣
∑

j∈J

(ajkgjk − ajgj)

∣∣∣∣∣∣

p

dµ = 0. (5)

As above, we start by decomposing the integration into sum of integrals over convex
regions. The left hand side of (5) is equal to

lim
k→∞

∑

S∈S1

∫

Tk(S)

∣∣∣∣∣∣
∑

j∈S

(ajk − ajgj)

∣∣∣∣∣∣

p

dµ +
∑

S∈S2

∫

Tk(S)

∣∣∣∣∣∣
∑

j∈S

(ajk − ajgj)

∣∣∣∣∣∣

p

dµ.

Using the triangle inequality, (4), and limk→∞ µ(Tk(S)) = 0 for all S ∈ S2, we get

lim
k→∞

∑

S∈S2

∫

Tk(S)

∣∣∣∣∣∣
∑

j∈S

(ajk − ajgj)

∣∣∣∣∣∣

p

dµ ≤

lim
k→∞


 ∑

S∈S2

∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

ajk

∣∣∣∣∣∣

p

dµ +
∑

S∈S2

∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

ajgj

∣∣∣∣∣∣

p

dµ


 =

lim
k→∞

∑

S∈S2

∫

Tk(S)

∣∣∣∣∣∣
h−

∑

j∈S

ajgj

∣∣∣∣∣∣

p

dµ =
∑

S∈S2

∫

T (S)

∣∣∣∣∣∣
h−

∑

j∈S

ajgj

∣∣∣∣∣∣

p

dµ = 0

since µ(T (S)) = 0 for S ∈ S2.
Thus limk→∞

∑
S∈S2

∫
Tk(S)

|∑j∈S(ajk−ajgj)|pdµ = 0, which implies that the left hand
side of (5) is equal to

lim
k→∞

∑

S∈S1

∫

Tk(S)

∣∣∣∣∣∣
∑

j∈S

(ajk − ajgj)

∣∣∣∣∣∣

p

dµ =
∑

S∈S1

∫

T (S)

|
∑

j∈S

ajgj − ajgj |pdµ = 0

because (
∑

j∈S ajkgjk)χTk(S) = (
∑

j∈S ajk)χTk(S) converges to cSχT (S) = (
∑

j∈S ajgj)χT (S)

in Lp([0, 1]d).
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So limk→∞
∑

j∈J ajkgjk =
∑

j∈J ajgj , the same is already known to be true when J is re-
placed by I, and hence also limk→∞

∑n
j=1 ajkgjk =

∑n
j=1 ajgj subsequentially in Lp([0, 1]d).

2

Theorem 3.1 shows that a function in Lp([0, 1]d) has a best approximation among func-
tions computable by one-hidden-layer networks with a single linear output unit and n Heav-
iside perceptrons in the hidden layer. In other words, in the space of parameters of networks
of this type, there exists a global minimum of the error functional defined as Lp-distance
from the function to be approximated.

Combining Theorem 3.1 with results from [7], we get the following corollary.

Corollary 3.3 In (Lp([0, 1]d), ‖.‖p) with p ∈ (1,∞) for all n, d positive integers there ex-
ists a best approximation mapping from Lp([0, 1]d) to spannHd, but no such mapping is
continuous.

4 Discussion

In Proposition 3.3 of [1] the authors show that any sequence {Pk} in spannHd, with the
property that lim supk ‖Pk‖L1(K) ≤ 1 for every compact set K in Rd, has a subsequence
converging a. e. in Rd to a member of spannHd. Although the proof techniques in [1] do
have some overlap with those used here, the results there are different. A. e. convergence
need not imply Lp convergence for p ∈ [1,∞): the sequence Pk = (k)

1
p χ[0, 1

k ] converges a.
e. in Lp(R1) but has no convergent subsequence in the Lp-norm. Since this sequence is
bounded and has no convergent subsequences, it also illustrates that spannHd is not bound-
edly compact. Another example of an approximatively compact set that is not boundedly
compact is any closed infinite-dimensional subspace of a uniformly convex Banach space.

Theorem 3.1 cannot be extended to perceptron networks with differentiable activa-
tion functions, e.g., the logistic sigmoid or hyperbolic tangent. For such functions, sets
spannPd(ψ) (where Pd(ψ) = {f : [0, 1]d → R : f(x) = ψ(v · x + b),v ∈ Rd, b ∈ R}) are not
closed and hence cannot be proximinal. This was first observed by Girosi and Poggio [4]
and later exploited by Leschno et al. [9] for a proof of the universal approximation property.

Theorem 3.1 does not offer any information on the error of the best approximation.
Estimates in the literature (DeVore, Howard, and Micchelli [3], Pinkus [11], Pinkus [12])
that give lower bounds on such errors and depend on continuity of best approximation
operators are not applicable because of Corollary 3.3.
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