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Abstract 
 
Microstructure models of foreign exchange markets emphasize two different channels of 
pressure in pricing dynamics; these are inventory and asymmetric information effects.  
Past empirical studies for foreign exchange markets have found evidence supporting the 
existence of both effects in the Dollar/DM market.  This paper tests for the presence of 
within sample variation in the intensity of these effects and whether these are related to 
market conditions external to the pricing agent (the dealer).  We test for and find multiple 
structural changes at conventional significance level.  We incorporate the parameter 
instability into the estimated equations of foreign exchange.  The new estimates reveal a 
pattern in which asymmetric information effects and inventory effects on the price of 
foreign exchange vary in intensity with external market conditions, and are dependent on 
these conditions. 
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I.  Introduction 
 
Standard microstructure models of foreign exchange markets emphasize two different 

channels of pressure in pricing dynamics; these are inventory and asymmetric 

information effects (O�Hara 1995, Lyons 2000).  The existence of inventory effects in 

pricing of foreign exchange implies that a dealer will adjust her price to counteract the 

accumulation of unwanted inventories.  Similarly, the existence of asymmetric 

information effects implies that the dealer adjusts prices when trading to reflect the 

possibility that the opposite party has superior information about the future value of the 

asset.  If either inventory effects or asymmetric information effects are present in the 

market, the dealer will increase her price when a buyer initiates a trade with her (i.e. 

transacted at the dealer�s offer), and will lower prices when a seller initiates a trade with 

her (i.e. transacted at the dealer�s bid).   

 
The Lyons (1995) paper used transaction data to estimate a model of microstructure 

effects in the pricing decisions of a foreign exchange market dealer.  This paper found 

both of the aforementioned effects present in the data.  Building on this result, we look at 

whether these effects are muted or magnified in subsamples, and whether this is related to 

external market conditions.  By looking at a variety of factors to determine what the 

market conditions may be external to the dealer, we find evidence robust to sample 

selection bias that the estimates of the inventory and asymmetric information effects vary 

with market conditions.  Hence, we find evidence that the Lyons (1995) results 

confirming the microstructural hypothesis in foreign exchange exist in the market with 
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varying degrees of intensity.  We find that the degree of intensity is related to the 

conditions that the dealer is facing in the overall market.   

 
The rest of the paper is divided as follows.  Section II gives a brief description of the 

theoretical framework used to describe the microstructure effects of the foreign exchange 

market.  Section III describes the data used in the paper.  In Section IV we model the 

effect of external conditions on price as being governed by a hidden state variable that is 

governed by a Markov process.  In Section V we look for evidence of within sample 

variation of the data based on rolling regressions and other basic statistical evidence of 

parameter instability.  In Section VI we look at statistical tests of breaks in the estimation 

based on the work of Bai and Perron (1998) and Bai (1999).  These tests are very 

powerful in that they can reject among alternative hypotheses of multiple breaks, and 

select the optimal number of breaks, versus a null of no breaks.  In Section VII we look 

for within sample variation in inventory and information effects based on parametric 

estimations.  In Section VIII we look at non-linear estimation.  In section IX we 

conclude.  The appendix gives a brief description of the relevant economic events 

occurring at the time that the sample was recorded, as an extension of section II. 
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II.  Theoretical Framework 
 
This section presents a model of foreign exchange market trading that incorporates both 

inventory and asymmetric information effects.  We follow the Lyons (1995) model, 

which explains and is used to test microstructure hypotheses in the foreign exchange 

market.  We begin by assuming a world where the full information price of the risky asset 

is given by: 

 

(1) Vt = Σ rt = Vt-1 + rt    rt ∼ N(0,σ2
r). 

 

Dealers trading in this market quote prices by inferring the full information value of the 

asset (in this case the DM price of a Dollar) from the available signals.  These signals are: 

 

(2) St = Vt + ηt     ηt ∼ N(0,σ2
η). 

 

(3) Cjt = Vt + ωt     ωt ∼ N(0,σ2
ω). 

 

(4) Qt = Vt + εt     εt ∼ N(0,σ2
ε). 

 

In equation (2) St represents publicly available information about the asset.  In equation 

(3) Cjt represents the opposite party�s private information (we call the opposite party 

dealer j, and our dealer we call k).  Finally, in equation (4) Qt represents a signal of the 

market-wide orderflow as a whole. 

Without any of these signals the dealer�s best estimate of the value of the asset is  
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E[Vt| Ωt-1]= Vt.  At the beginning of a period, the dealer observes St, then Qt.  Then the 

dealer quotes a schedule of prices for a possible Qjt, where Qjt is dealer j�s order to dealer 

k.  In a real foreign exchange market transaction, a schedule would not be quoted because 

dealers trading with each other usually have a working relationship based on a $10 

Million standard order size.  Here we allow for dealers to have different order sizes 

because each dealer will have a liquidity shock. 

     

 

 

Figure 1. The timing of the market.  This figure shows the signals in the sequence that our dealer observes them. 

 
The diagram above shows the timing of the market.  At each box, dealer k (our dealer) 

can update her information set based on the available incoming signals contained in the 

box.  For example, in the first box, after observing St, dealer k�s estimate of Vt is:  

E[Vt| Ωt-1, St]= St. 

Notice that dealer k does not observe dealer j�s Cjt.  This is because Cjt is dealer j�s 

private information.  We do not include an extra step for incorporating dealer k�s own 

Ckt, as that could be suppressed into some new Stk
* and would not add to the analysis.  In 

the second box, after observing Qt, dealer k�s inference about Vt becomes: 

 

(5) µt = E[Vt| Ωt-1, St, Qt] = ρSt + (1-ρ)Qt   µt∼ N(Vt, σ2
µ). 

 

(6) ρ = (σ2
ε + σ2

η)-1σ2
ε 

 

St,Cjt Qt Pkt Qjt rt observed 
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Equation (5) captures the inferred full information value of the asset, based solely on 

publicly available information.  The intent of this model is want to see how dealer k sets 

prices.  She does so by first looking at the publicly available information, which is 

equation (5).  Having done this, she turns to trying to infer the private information of the 

opposite party, dealer j.   

 

We assume that dealers have negative exponential utility, and as a result, their orders are 

linearly related to the difference between observed market prices and the private asset 

valuation. 

 

(7) Qjt = θ(µjt � Pkt) + Xjt. 

 

Equation (7) is dealer j's order after observing dealer k's schedule of prices, Pkt.  Dealer j 

orders Qjt dollars, which is a linear combination of the difference between what he 

expected the dollar price to be (µjt) and what it is (Pkt), plus a liquidity shock (Xjt).  

Because dealers know the model, and each have the same utilities, they know the 

functional form of their utilities. Hence, we introduce the liquidity shock Xjt so that 

dealer k cannot invert Qjt completely and learn the full private information of dealer j.  

This information is embedded in his best estimate of Vt, which we call µjt.   

 

(8) µjt = λµt + (1-λ)Cjt. 

 

(9) λ = (σ2
µ + σ2

ω)-1σ2
ω 
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What dealer k will do now (he is the quoting dealer) is to isolate all the stochastic shocks 

that are not known to him around the value of Vt.  Using (7) and (8) we have: 

 

(10) (1 - λ)-1[(Qjt/θ) + Pkt - λµt]  = Vt + ωjt  + [(1 - λ)θ]-1Xjt. 

 

Notice that everything on the left hand side of (10) is know to dealer k, and on the right 

hand side are all things that he does not know, and dealer j does.  We will call the statistic 

on the left hand side Zjt.   

 

(11) Zjt ≡ { (1 - λ)-1[(Qjt/θ) + Pkt - λµt]  } ∼ N(Vt, σ2
Z). 

 

Zjt contains the private shocks of dealer j, and dealer k (the quoting dealer) only knows 

the distribution.  Hence, Zjt is as close to unraveling dealer j�s private information as the 

quoting dealer can get.  So far we have public information summarized by µt and the 

information of the opposite party summarized by Zjt.  Dealer k�s best estimate of the asset 

value then becomes: 

 

(12) µkt = κµt + (1-κ)Zjt 

 

(13) κ = (σ2
µ + σ2

Z)-1σ2
Z. 
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So that equation (12) is the best estimate of Vt by dealer k1.  Assuming a simple 

inventory adjustment model, dealer k�s optimal price would be given by: 

 

(14) Pkt = µkt - α  (Ikt � I*) + γDt. 

I* indicates the optimal inventory level of the dealer. 

 

Plugging in from the equations above, and redefining a parameter φ as: 

 

(15) φ = [κ-{λ(1-κ)/(1-λ)}] 

 

We arrive at the following pricing equation: 

 

(16) Pkt = φµt + (1-φ)[(Qjt/θ) + Pkt] - α[Ikt - I*] + γDt, 

 

Or  

(17) Pkt = φµt + [(1-φ)/(φθ)]Qjt  - (α/φ)[Ikt - I*] + (γ/φ)Dt. 

 

                                                 
1 Note here that Lyons suppresses dealer k�s own private information, otherwise we 
would have something looking like 

(12�) µkt� = γµkt + (1-γ)Ckt,  

where dealer k is using his inference of dealer j�s information through Zjt, public 
information through µt, as well as his own private information in Ckt.  This, however, is 
probably suppressed since it would not add to the analysis, but would add more 
coefficients and variances.   
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Equation (17) is as far as the model can go without specifying a functional form for the 

signal of market-wide orderflow.  In the FX markets brokered orderflow is the only 

available signal, however it is far from a complete picture of market-wide orderflow.  

Assuming that orderflow signals are the sum of m dealers' orders, plus a noise term, 

brokered orderflow becomes, 

 

(18) t
m

l ltt QB ψ+=∑ =1
.  

Using this definition of brokered trading, the model is then extended to include a statistic 

Qt, which will be centered on Vt  with a random error.  It can be shown that with (18) we 

can define this Qt to be: 

 

(19) Qlt = Bt/[mρθ(1-λ)] + St 

 

Where St is the signal of the asset value defined in equation (2).  The price equation then 

becomes: 

 

 

(20) Pkt = Bt/[mρθ(1-λ)] + St + [(1-φ)/(φθ)]Qjt  - (α/φ)[Ikt - I*] + (γ/φ)Dt. 

 

The only term left to specify in this equation is St, which is the marketwide signal of asset 

value.  We assume that St is taken to be last period's value: 

 

(21) St = µk,t-1 + εkt = Pk,t-1 + (α/φ)[Ik,t-1 - I*] - (γ/φ)Dt. 
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Equation (21) uses the definition of Pk,t to rewrite the definition of the 'random walk' type 

expectation of Vt specified by St.  Plugging this into the price equation, we get: 

 

(22) ∆Pkt = [α- (α/φ)]I* +  [(1-φ)/(φθ)]Qjt - (α/φ)Ikt + αIkt-1 + (γ/φ)Dt + γDt-1 + 

Bt/[mρθ(1-λ)] + εkt. 

Or 

(23) ∆Pkt = β0 + β1 Qjt +  β2 Ikt + β3 Ikt-1 + β4 Dt + β5 Dt-1 + β6 Bt + εkt. 

 

Where the model predicts {β1, β3, β4, β6}>0, and {β2, β5}<0.  Furthermore, using the 

definitions of St, µt, and Qt, we can show that the error structure  εkt is a moving average.  

As a result, 

 

(24) εkt = β7 νk,t-1 + νk,t . 

 

Hence, plugging into the price equation: 

 

(25) ∆Pkt = β0 + β1 Qjt +  β2 Ikt + β3 Ikt-1 + β4 Dt + β5 Dt-1 + β6 Bt + β7 νk,t-1 + νk,t 

. 

 

Finally, inventory can be controlled in three different ways.  One is to adjust prices.  The 

second is to sell to another dealer, that is, an out going order.  The third is to sell through 

a broker, or brokered orders.  We can write the inventory at any date as: 
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(26) Ikt = Ik,t-1 + Qo
k∆t + Qb

k∆t - Qjt.  

 

That is, (26) says that this trade's inventory (Ikt) is last trade's inventory (Ikt-1) plus net 

orderflow from outgoing trades (Qo
k∆t), as well as net orderflow from brokered trades 

(Qb
k∆t), that have occurred between the last incoming trade, and the present incoming 

trade.  We use ∆t since a time period is defined as the elapsed time since the last 

incoming order (Qjt-1), and this one (Qjt).  

 

Hence, incorporating these extra inventory control measures brings us to the final 

estimable equation, after taking into account the power of the data in disentangling the 

elements of ∆Ikt, 

 

(27) ∆Pkt = β0 + β1 Qjt +  β2 Qo
k∆t + β2

' (Qb
k∆t - Qjt) + (β2 + β3 )Ik,t-1 +  

+ β4 Dt + β5 Dt-1 + β6 Bt + β7 νk,t-1 + νk,t . 

Hence (27) represents the estimable equation.  The moving average has a negative 

autocorrelation, so we would predict β7<0.  Furthermore, the model predicts that β2=β2
'.    
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III.  Data 

The data used to estimate the model in the previous section is unique in that it is direct 

transaction data for a dealer.  As such it contains no aggregation error, and almost no 

measurement error.  The data set is composed of the recorded transactions of a foreign 

exchange dealer based out of New York, trading in the Dollar/DM market for a large 

bank.  The data is recorded in transaction time, not wall-clock time.  This means that the 

time subscript t refers to the transaction number, not to the time at which the transaction 

occurred.  For example, if t=7, this indicates that it is the seventh transaction of the week 

for the dealer, not that this transaction occurred at 7:00 a.m. or seven minutes after the 

opening of the market, or anything related to wall-clock times.   

 

There are 843 observations for the dealer, which were recorded in the week of August 3-

7, 1992.  Monday had 181 observations, or t=1 to 181.  Tuesday had 149 observations, or 

t= 182 to 330.  Wednesday had 110 observations, or t=331 to 440.  Thursday had 152 

observations, or t=441 to 592.  Friday had 251 observations, or t=593 to 843.  Excluding 

the first observation for the change in price component, as well as four overnight 

observations that are irrelevant for the purposes of measuring intraday price changes, we 

are left with a sample size of 838.  For each observation we have measurements for the 

following variables: 

 

Pt: The price of the dealer at which an incoming sale or purchase occurred. 

Qjt: The incoming quantity demanded by the opposite party.  If the opposite party 

demands to buy, so that the quantity is transacted at the offer, this quantity is 
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recorded as positive.  If the opposite party demands to sell, so that the quantity is 

transacted at the bid, this quantity is recorded as negative.        

It: This is the dealer�s inventory at the time of (but not including) the incoming 

quantity Qjt. 

Dt: This is an indicator that picks up the direction of trade.  If the trade is buyer 

initiated, and occurs at the offer, Dt=1.  If the trade is seller initiated, and occurs at 

the bid, Dt=-1.  Hence, Dt and Qjt always have the same sign.  After controlling 

for asymmetric information via Qjt, and for inventory effects via It, Dt picks up the 

size of the effective spread.  Having this indicator, however, can be interpreted as 

primâ facie evidence of non-linearities in the data. 

 Qt: This component of the data set is made up of the brokered deals of one of five 

DM/Dollar brokers in the New York market.  As a result, it is a rough measure of 

the market-wide orderflow available to the dealer. 

 

Beyond this data we consider external information relevant to the estimation of the 

model.  We include a short summary of the events relevant to foreign exchange trading in 

Appendix B.  A general overview of the week in question is as follows.  In August of 

1992 the US economy was in a sluggish economic recovery, and in the midst of an 

election between George Bush and William Clinton.  The German economy was torn 

between two competing goals, fiscal and monetary.  The fiscal authority, was concerned 

with financing the reunification of Germany.  As a result, local, state and off-budget 

federal spending were increasing, as was inflation, and the money supply.  The 

Bundesbank, headed by Helmut Schlesinger, had raised interest rates by seventy-five 
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basis points on July 16 of that year; German rates were six percentage points above U.S. 

rates, but the money supply was not contracting.  In the week of August 3-7, 1992, the 

employment numbers for the U.S. economy were to be released.  On Wednesday of that 

week, the Bundesbank announced that it would not increase its Lombard rate.  On Friday, 

the employment numbers for July were released, and did not meet expectations.  This 

sent the dollar lower.  At the close of European trading, the Federal Reserve intervened 

multiple times to support the falling dollar.   

 
One approach to measuring the effects of external conditions is to include this 

information as well as information about other market (e.g. equity or other currency 

markets beyond the Dollar/DM).  The problem with this approach is that the strength of 

this data set lies in its precision in measuring the behavior of the dealer.  This data 

contains the exact transactions of the dealer with no measurement or aggregation error.  

Hence, because the data shows such a precise picture, including anything that would 

depart from this dealer�s behavior would contaminate the results.  We can see turns in the 

dealer�s pricing data that reflect the intervention of the Fed, for example.  Hence, we can 

easily break the sample up in that sense.  We cannot, however, introduce data outside of 

this data set, such as indicative quotes for other equity or currency markets, since its 

timing would not be synchronized with the transactions of our dealer, and in some cases 

is subject to measurement error (see Lyons 1995).    

 
To get a feel for the data set, we include a graph over the week of trading for each of the 

aforementioned variables (for further descriptive statistics see Lyons 1995).  In figure 2, 

we see the price and the change in price over the trading week.  As is evident from the 



 15 

upper panel, the price was generally falling over the week, until there is a sudden upturn 

in the market on the last day.  This upturn is due to the repeated intervention of the 

Federal Reserve to boost the dollar after the release of the US employment data for July.  

The signal for orderflow, Qjt, inventory It, and brokered trading, Qt, are pictured in figure 

3.  The empirical evidence for microstrucutre effects in foreign exchange markets 

obtained by Lyons 1995 were based on the data presented here, which was used to 

estimate an equation of the form of equation (25).  We now turn to the question of 

parameter instability, and within sample variation of parameter value and significance in 

the estimation of this model. 
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IV.  A First Pass:  Markov Processes and Regime Switching 
 
We reproduce here equation (25) for the reader.   
 
 
(25) ∆Pkt = β0 + β1 Qjt +  β2 Ikt + β3 Ikt-1 + β4 Dt + β5 Dt-1 + β6 Bt + β7 νk,t-1 + νk,t 
 

 
In figure 4 we see the results from the baseline estimation of the model.  The equation 

confirms the hypothesis of both inventory and information asymmetry effects being 

present in the process of determination of foreign exchange prices.  All variables are 

significant and properly signed.  Accepting that these are the variables that are relevant 

for estimating the true data generating process2, we now turn to the question of whether 

the functional form of equation (25) accurately captures the relationship between these 

variables. 

 

Notice the functional form of the equation (25).  If we interpret the estimates of β as the 

response to changes in inventory, incoming orders, and so on, we are implicitly making 

two assumptions.  The first is that the response of the dealer is linearly related to the 

variables observed.  So, for example, we would assume that the dealer lowers his price by 

β1 for the eleventh order to sell, after selling ten times in a row, just the same as if he had 

just received the first sell order.  However, what if the dealer senses that the market is 

falling?  We may hypothesize that the dealer may be inclined to sell into the falling 

market differently than he would be selling during a trending or 'normal' market.  For 

example, looking back at figure two, we can see that the market price is more volatile on 

                                                 
2 The question of whether a misspecification is present due to an omitted variable is, 
perhaps, relevant, but beyond the scope of this paper. 
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the last two days than on the first three.  Thursday begins at observation 441 (recall that 

observations are on the abscissa), where the price moves more erratically.  The question 

that we wish to analyze is whether by averaging the observations taken on these days 

with the observations on the other days, we are muting the potential effects of non-

linearities in the market.  For example, there may be non-linearities due to regime 

switching.   

 

If we know there to be such non-linearities, one way to capture is by using a maximum 

likelihood estimation method with a model of regime switching coefficients.  To model 

this, we define a state variable st, which defines the current state of the economy.  Agents 

cannot observe st, but they try to infer where they are, and then update their beliefs taking 

the inferred state into account.  An N-state Markov process is assumed to govern the 

movement of the variable st.   

 

The model of regime switching with a hidden Markov state variable can be generalize to 

include a large class of processes, including state variables that are not Markov.  After 

looking at various forms of the Markov regime-switching model, including regime 

switching autoregressive conditional heteroskedasticity, and three states instead of two.  

The more elaborate models reproduced the basic results of the simple two state model, so  

we chose this more parsimonious representation.  We will assume that there are two basic 

states of nature.  Let the low state be st=1, and the high state be st=2.  The transition 

matrix is a matrix P where each entry pa,b
 describes the probability of going from state a 
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to state b3. If we believe that the probability of going from one regime this period, to 

another next period is Markov, then, 

 

(28) P(st=j | st-1=i, st-2=k, st-3=l, ...) = P(st=j| st-1=i)  = pij. 

 

In this case the transition matrix would look like: 

(29) 







−

−
=

2211

2211

1
1

pp
pp

P . 

 

Hence in this model, depending on which regime he believes he is in, the trader will 

respond differently to the incoming signals in the market, e.g. inventory or orderflow 

changes.  This is in contrast to Lyons (1995), which estimates uniform responses 

throughout the entire week of trading.  If we look at figure 2, we would be saying that the 

trading on Monday was subject to the same responses as the falling markets of Thursday 

and Friday.  With multiple regimes, we can capture the optimal response to different 

trading environments in the markets intraday.  Furthermore, we can estimate these 

transition probabilities endogeneously through a grid search; we do not have to assign the 

transition probabilities.   

 

The estimation of this model is based on the EM algorithm in Hamilton (1994),   

                                                 
3 Note that pa,b is not the (a,b)th entry, it is the (b,a)th entry.  So the probability of going 
from state st=1 to st+1=2 is p1,2, and this is entry (2,1) in the P matrix, because the 
columns of the P matrix describe the distribution of going from state st=1 to all possible 
states.   
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Engle and Hamilton (1990), and Hamilton and Susmel (1996).  We begin by rewriting 

equation (25) into vector form. 

(30) ttst vxP
t

+′=∆ β . 

Where we have a vector of parameters that depends on the hidden state variable governed 

by the transition matrix given in (29).  For each state, there is a density particular to that 

state that describes the data generating process.  We stack the densities into a vector in 

equation (31).  

(31) 
( )

( )

( ) ( )

( ) ( )
































 ′−∆−











 ′−∆−

=
















=∆

=∆
=

=

=−
=

=

=−
=

2

2
12

2
1

2
112

1

2
exp2

2
exp2

;,|

;,1|

Ns

tNst
Ns

s

tst
s

ttt

ttt

t

xP

xP

xNsPf

xsPf

σ
βπσ

σ
βπσ

β

β
η MM . 

Equation (31) describes the vector of densities for the case of N states.  For each state and 

each point in time, there is a density describing the data generating process.  Note that to 

estimate this, we must estimate k parameters in the jst =
β  vector of parameters, for j=1 to 

N states.  Hence, this is a very tall order.  The estimation is carried out by defining an 

(Nx1) vector of estimated state probabilities  tt|�ε , such that tt|�ε  is the distribution of 

probabilities of being in the N states, contingent on the information at t.  Accordingly, 

tt |1� +ε  represents the estimated probability distribution of landing in the N states at time 

t+1, given the information set at time t.  To estimate an equation of the form of (30), we 

iterate over the following algorithm:  

(32) 
( )( )
( )( )ttt

ttt
tt ηε

ηε
ε

•′
•

=
−

−

1|

1|
| �1

�
� . 

(33) tttt P ||1 �� εε =+ . 



 20 

For further details, see Hamilton (1994), and Engle and Hamilton (1990).  What is 

important to note is the number of parameters estimated in the likelihood function 

embedded in the algorithm.  There are k parameters by N states.  Doing a grid search 

over a problem of this dimensionality is infeasible.  Instead, we begin by looking for two 

state regime switching in the left hand side variable only.  This way, we subsume all of 

the parameters of the right hand side into the estimated mean and variance of the 

densities on the right hand side of (31).  Hence, for now we postulate that a better 

approximation to the data generating process is of the form: 

(34) 




=∆
),(
),(

2
22

2
11

σµ
σµ

N
N

Pt  

Where (30) shows that the change in price is in one of two normal distributions, and the 

probability of switching from one distribution to the other is governed by the transition 

matrix of equation (29).  Hence for now we subsume all of the right-hand-side variables 

into the parameters describing the distributions of equation (30), and calculate this as a 

univariate model.   

 

In figure five we see the results of this estimation.  The data generating process seems to 

exhibit Markov-type regime changes.  For example, in observation 401, the probability of 

being in regime one is almost zero.  In observation 801, which is around where the Fed 

intervenes in the market, we see the same probability jump to 1.  Hence, if we estimate 

our parameters using data points such as these, we would be forcing a linear average of 

these two distributions, and perhaps muting some parameter differences among the 

regimes.  Because we have only included the left hand side variable in the Markov 

regime switching estimation, we cannot speculate on whether this regime changing is 
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affecting the estimated parameters.  That is, we have no direct evidence that the right 

hand side is failing to pick up these regime changes, and hence making the parameters 

unstable.  Also shown in figure five is a chart with the estimated moments of the two 

distributions.  The chart shows the estimated means and variances for the two states.  

State one has both a higher (less negative, closer to zero) mean and a higher variance than 

state two.  Hence, state two is a state in which the price is falling more sharply than state 

one, and fluctuate less than state one. 

 

To address the problem of not including the possible effects of the regressors, we take the 

residuals from the estimated equation (25), and look for regime changes in them.  Figure 

six shows the estimated residuals from equation (25), and an estimate of regime 

switching for these residuals. 

 
From the figure we can see that the residuals display almost identical Markov switching 

behavior.  Note what this implies.  We have looked at the left-hand-side variable and 

found evidence of regime switching.  We have then attempted to explain the variation in 

the left hand side variable using equation (25).  We have taken the unexplained part of 

equation (25) and found the same regime switching.  Hence, our model is not explaining 

some of the variation in the left-hand-side variable, particularly the variation picked up 

by Markov regime switching. 

 

While we cannot take this to be clear evidence that the data generating process is in fact 

represented by a Markov model in the spirit of (29) and (30), we can take this as evidence 
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that there are non-linearities that are not captured by (25).  We now turn to looking within 

the sample for some direction as to what these non-linearities may imply. 
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V.  A Closer Look at the Data 

 

To begin isolating some of the potential parameter instability that the specified equation 

may fail to capture, we roll a 150-observation window across the sample, and re-estimate 

equation (25) at each of the subsamples.  So, for example, the first estimate would consist 

of estimating equation (25) on the subsample beginning with observation one and ending 

with observation 150.  The idea here is to allow for piecewise variation in the parameter 

values within the sample.  To give an example of why this may be helpful, suppose that 

we are interested in seeing whether the market is behaving differently on Tuesday than on 

Wednesday.  There are on average 170 incoming observations per day.  By allowing a 

window of 150 observations, we can look at an average of twenty parameter estimates 

just for each day.  As the parameter evolves, we can get an idea of whether the values for 

Tuesday are very different than on Wednesday.  With this approach we sacrifice the 

explanatory power of a greater sample size, but gain the within sample variation. 

 

The figures below show these rolling estimates.  If we look at figure seven, for incoming 

dealer orders, we can see that the estimates are highly significant in the middle of the 

week.  Figure eight shows that inventory is less significant in the beginning of the week, 

but much more so in the middle and towards the end, when the market becomes more 

hectic.  In fact, inventory becomes evermore significant, as the week draws on, until the 

point of intervention by the Fed, where its significance falls off. 
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Figures nine and ten show the piecewise variation in the lagged inventory coefficient, and 

the adjusted R2.  Note that lagged inventory shows the same behavior in terms of growing 

significance throughout the sample.  As the more volatile days are estimated, lagged 

inventory becomes a highly significant variable, whereas in the more tranquil markets of 

the beginning of the week, lagged inventory is not piecewise signinficant.   

 

The adjusted R2 shows itself higher than the total R2.  The reader will recall that a 

reduction in sample-size should reduce the adjusted R2, not increase it4.  In the figure, 

however, we can observe that the adjusted R2 is consistently higher than the estimated R2 

for equation (25).  Hence, the variation in the data generating process that this equation 

averages out by assuming a linear form is so significant, that taking a piecewise 

specification of eighteen percent of the sample (150 of 838 total) increases the 

explanatory power of the regressors throughout almost the entire sample.  

                                                 
4 The adjusted R2 can never be greater than the R2, and can decrease as one adds 
regressors.  Because the derivative is positive, as we decrease T, we would expect that 
the adjusted R2 would also decrease.  (Note that k=7 in equation (25).)   
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The rolling estimates for the direction of trade indicators, as well as for the moving 

average coefficient and brokered trading are reported in Appendix C.   

 

The piecewise observed variation in the coefficients can be examined further with a 

rolling F-test for structural breaks.  In figure 11 we report the results of a rolling 

breakpoint estimate for equation (25).  The estimate involves picking a breakpoint 

transaction, and splitting the sample at that transaction.  We estimate the resulting two 

subsamples, and compare the residual sum of squares using a standard F-test (sometimes 

called a Chow test).  The advantage to this test is that it rolls the breakpoint along every 

possible transaction, so long as the two resulting subsamples contain sufficient 

observations to estimate equation (25).  In this sense, it is fairly comprehensive over the 

entire range of possible breakpoints.  The drawback is that this test has no power to reject 

the null hypothesis of no breaks versus any alternative hypothesis besides the hypothesis 

of one break.  Hence, it is of limited value in detecting multiple breaks.  This is a point to 

which we will return in section VI.   

 

In the figure we can see that the test seems to find a break in the middle of the week, and 

then falls again towards the very end of the sample.  Hence, it would seem that the model 

changes from the beginning of the week to the end.  To further corroborate this 

hypothesis, we run a Wald test to see if the coefficients are equal at the beginning of the 

sample, versus at the end.  We report the results in figure twelve. 
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So far we have explored the issue of whether there is within sample parameter stability 

and goodness of fit for equation (25).  The evidence presented so far would support the 

hypothesis of parameter instability, however, no statistical test presented so far has the 

necessary power to reject the null of no breaks in favor of an alternative hypothesis of a 

more general character than just of one break.  We now turn to examining this issue. 
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VI. Statistically Testing for Breaks 
 
After describing a modle of microstructure in foreign exchange in section II, section III 

documented economic factors that have the potential to affect the Dollar/DM market over 

the week in question.  Section IV shows a two-state Markov process that finds market 

switching present in the data, and not picked up by the equation specified in previous 

work.  Section V finds that rolling estimates indicate parameter instability within the 

sample.  Particularly, that inventory effects and asymmetric information effects tend to 

offset each other within the sample.  In this section we rigorously search for parameter 

instability by examining statistical tests for within sample structural breaks.  We can test 

for exactly how many breaks are present in the sample without knowing total number of 

breaks, or the location, and then find them at better than 2.5% significance.  We find 

evidence of multiple structural breaks at the aforementioned significance levels.  

 

The statistical tests presented in this section are based on recent econometric 

developments regarding testing for and dating of multiple structural changes within 

samples5.  We can estimate breaks in the model by estimating minimized sum of squared 

residuals over a set of potential breaks.  We treat the number of breaks, and the dates of 

their occurrence as unknown variables to be estimated.  This estimation strategy is robust 

to general forms of serially correlated and heteroskedastic errors, as well as partial 

structural changes, in which some parameters are allowed to stay fixed throughout the 

entire sample. 

                                                 
5 See Bai and Perron (1998), Bai (1999). 
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Consider the following model. 
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In equation (35) we assume a generalized model of partial structural change, with m 

breaks (i.e. m+1 regimes).  In particular, this model allows for some of the regressors (zt') 

to change regimes, and consequently their corresponding coefficients to vary among 

regimes (i.e. jδ ).  The model assumes that the other regressors (xt) are not subject to 

structural breaks, and as such their corresponding coefficients (βt) are constant 

throughout the entire sample.  If p=0, we have the case of full structural change with 

every regime change. 

We define a partition (T1,�,Tm) to be a set of m dates where the sample changes regimes 

(i.e. Tj represents the last date of regime j).  We denote a particular partition j as {Tj}, so 

that the coefficients jδ  and β are estimated for each partition {Tj}.  Denoting the true 

value of the parameters with a 0 superscript, we can write the true data generating process 

as: 
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With (32) being the matrix form of the data generating process of (31), and (33) the 

vector of true parameter values to be estimated.  For any given partition {Tj}, we first 

estimate β, and jδ  by minimizing the sum of squared residuals.  That is,  

(38) ( ) ( )∑ +
= ∑

−= =

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1 1

2
}{�,}{�min m
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iTt jjjttt TTzxy δβδβ  . 

Hence, (34) gives the optimal parameter estimates as a function of the partition.  We then 

substitute these into the objective function and denote the sum of squared residuals as 

ST(T1,�,Tm).  The estimated breakpoints are the points at which the sum of squared 

residuals is minimized.  
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A test of no break versus m=k breaks would take the following form.  If (T1,�,Tk) is a 

partition such that Ti=[ iλ T] for (i=1,�,k), then  
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Here, SSRk is the sum of squared residuals under the alternative.  We must place 

restrictions on the break dates so that they are asymptotically distinct, and bounded from 

the boundaries of the sample.  For ε >0, we define the set of possible partitions as:  
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(43) ( ){ }ελελελλλλε −≤≥≥−=Λ + 1,,||;,, 1111 kikK , 

where iλ =(Ti/T).  It is important to note here that (39) imposes a crucial restriction on the 

last possible break date; the last break date is limited to being no closer than ε  proportion 

of the sample away from the last observation.  To find the asymptotic distribution of the 

test statistic, we adopt ε =0.05, to ensure that the test has sufficient power.  Hence the last 

possible break date can be no closer than five percent or no less than 42 observations 

from the end of the sample.  With 838 observations, this restriction amounts to not 

allowing a breakpoint at or after observation 796.  Note, however, that the Fed 

interventions on Friday, August 7, 1992 occurred at the end of the trading day, after 

European trading had ceased.  They are picked up in the sample in the neighborhood of 

observation 796.   On the day when the Fed intervened no less than three times to support 

the dollar, the prior would be that the point of intervention would represent a structural 

break in the sample, and indeed we observe a change in the price direction at that 

moment.  Yet here we will not expect the test to pick this up. 

 

The test of no breaks versus k breaks gives no feel for what is occurring between zero 

and k breaks, in the event of a rejection of the null hypothesis.  Instead we consider a test 

of l versus l+1 breaks.  We adopt the null hypothesis of l breaks.  We can then estimate 

the breakpoints consistent with (35).  Using the estimated partition ( )mTT �,,�
1 K  we can test 

each of the (l+1) segments for the presence of an additional break.  At each step we 

conduct (l+1) tests (one on each sub-segment) of no structural change versus the 

alternative of one structural change.  This test occurs over each of the l+1 sub-segments, 

where a sub- segment spans ( )ii TT �,1�
1 +−  for (i=1,�,l), and ( )TTT l == +10

�,0� .  The null 
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hypothesis of l structural breaks is rejected in favor of the alternative of (l+1) structural 

breaks when the sum of squared residuals for the smallest of the segments where (l+1) 

breaks were found is sufficiently smaller than the minimum sum of squared residuals for 

the l breaks.  That is: 
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Here, 2�σ  is a consistent estimator of 2σ  under the null hypothesis.  Equation (44) 

defines the test statistic, and equation (45) gives the area between the two breakpoints in 

question, where the new potential breakpoint is allowed to take on values.  We begin by 

estimating this model for no breaks, and perform the test for one break.  If we reject the 

null, we test for one break versus two breaks, and so on.  At every rejection of the null 

hypothesis, we increase l sequentially until the test fails to reject the null hypothesis of no 

additional breaks.     

 

The estimation of these test statistics are computationally intensive, and as a result, the 

maximum number of breaks initially permitted was limited to five.  This limitation turned 

out to be of no consequence, since the test rejected five breaks in all cases at conventional 

significance levels.   
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In figure (13) we can see the results of the Bai Perron tests for multiple structural breaks.  

The data on brokered interdealer trading was excluded in this estimation for 

computational efficiency.  The result of interest is that of column one.  Here we see that 

allowing full structural change, and a maximum of five breaks, we reject the null 

hypothesis of no breaks in favor of one break occurring at observation number 449, at the 

one percent significance level.  Furthermore, we cannot reject the null hypothesis of one 

break at observation 449 versus two breaks at any other point in the sample.  Hence here 

we have statistical evidence of one break in the sample. 

In the second panel of figure (13) we report the results of restricting the coefficients of 

the variables in the left column to stay constant within sample.  This is solely for 

comparison purposes, because there is no theoretical justification for assuming that some 

of these coefficients vary while others do not.  The purpose of fixing one coefficient 

throughout the sample is to increase power when the researcher knows this coefficient is 

invariant among (potential) structural breaks.  This is not the case here.  Withstanding 

this caveat, we confirm a breakpoint in the vicinity of observation 449 in three cases.  

Interestingly, we cannot reject the null of no breaks when we fix the coefficient on lagged 

inventory (It-1) and the coefficient on lagged orderflow indicator (Dt-1) across potential 

structural breaks.  Finally, fixing inventory across potential breaks yields not one but 

three breaks at the one percent level, and four breaks at the 2.5% level.   

 

Hence, we have found one break in the sample that is statistically significant, and 

corresponds to the vicinity of observation 449.  This test has confirmed the results of 
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previous sections insofar as finding a break at approximately the beginning of Thursday, 

August 6, 1992 in our sample.  Finally, this test is, by construction, unable to pick up a 

change in regime at the time of the Fed intervention. 
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VII.  Parametric Estimation with Structural Breaks 
 

In this section we estimate equation (25) taking into account the information available 

from previous sections on structural breaks present in the sample.  By using several 

criteria for choosing subsamples and break dates, we avoid the issue of sample selection 

bias.  We identify and characterize the asymmetric information and inventory effects on 

price setting behavior by foreign exchange traders in three different states within the 

sample.  The first state can generally be thought of as the normal or sideways trending 

market state.  Here, the trader is not facing a tumultuous market, or too much uncertainty.  

The second state can be thought of as one of intense trading, with market events changing 

rapidly, and prices and orderflow fluctuating more heavily.  Here the trader is adapting to 

a faster moving market, where perhaps fundamentals are shifting, and uncertainty is 

greater.  The third state is one in which the Fed intervenes.  Here the monetary authority 

is ratcheting the market upwards, and as a result the force of the intervention changes the 

relationship between price changes and the right hand side variable.  We first present 

each of the estimations resulting from subdividing the sample according to different 

regime selection criteria.  We then present a generalized pattern that is common to all the 

results, and this pattern is robust to the different criteria used to select the regimes.  This 

generalized result better characterizes the behavior of a dealer in the foreign exchange 

markets, in accordance with the microstructure theory of this market. 
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Markov Process 

In this section, we use the estimated transition probabilities to segregate the areas of the 

sample that are in different regimes.  The general idea is to segregate areas in the sample 

where the structural relationship of the data generating process is different from other 

areas.  By breaking the sample into areas in which we believe that structural changes 

have occurred, we can test for breaks and look at the parameter changes in the different 

subsamples.   

 

In looking at the transition probabilities (figure 5), the majority of the sample is in regime 

two.  There are segments, however, where the probability of being in regime comes close 

to unity.  After looking at several selection criteria, we defined three regimes within the 

full sample.  The first is composed of three disjoint windows, which separate two disjoint 

parts of the second regime, and the third. 

 

In figure (14) we see a diagram depicting these subsamples.  Each regime is shaded 

differently, to show how the disjoint parts of the sample are combined based on the 

estimated probability of being in state 1 for both the change in price, and the residual of 

equation (25).  As shown in the figure, regime one has three parts.  The first part is 

composed of observations 1 to 49.  The second part is composed of observations 96 to 

549.  The third is composed of observations 741 to 794.  The idea behind the selection 

criteria used to segregate the sample into these subsamples was based on the following.  

We assume most of the observations are in the first regime.  If the estimated probability 

of being in state one approached unity for an observation, we considered including that 
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observation to be in the second regime.  If enough surrounding observations were close to 

unity as well, then the neighborhood of observations was included in the second regime 

(and hence excluded from the first).   We defined approaching unity as having an 

estimated probability of being in state one of no less than 0.9.  If an observation and its 

residual met this criterion, we then considered a window of five observations above and 

below it.  If the surrounding observations also approached unity, we considered the same 

neighborhood around them.  If three or more observations met the criteria, we included 

the neighborhood in regime two, i.e. not part of the first regime.  We then selected out the 

last part of the sample, which had been a part of regime two, where the Fed intervened, 

because of the unusual continuum of points at which the probability of being in regime 

one was better than 0.98.  Clearly, there was no switching in this part of the sample, and 

it was not like the other parts of regime two.  Hence, we defined it as its own regime. 

 

In figure (15) we depict the transition probabilities, with dark vertical lines indicating the 

regimes.  In the top panel we see two pairs of dark vertical lines, and between each pair 

of lines, the estimated probability of being in regime one jumps up erratically.  The areas 

between these dark lines define regime two.  In the bottom panel, at the right end of the 

graph, we see another pair of dark lines.  Between these lines are the observations that 

comprise regime three. 

 

The model was estimated according to equation (25), with the sole addition of a dummy 

to indicate the jumps in the sample.  The data was arranged in chronological (event time) 

order within regimes, and then arranged by regimes.  The jump dummy takes on the 
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value of one when the data switches from one subsection of the sample to another, zero 

everywhere else.  The brokered data was excluded to facilitate the estimation of regime 

three, as there are only forty-nine observations.  With six right hand side variables, plus a 

dummy for the jumps in the sample, plus a constant and a moving average coefficient, 

there is not enough data for estimation.  Since regime three has no jumps, we exclude the 

dummy for jumps in the sample.  Since the brokered data is zero throughout most of the 

sample in general, and throughout all of regime three in particular, we exclude that as 

well.   

 
Figure (16) shows the estimation results for the regimes selected according to the criteria 

based on the estimated state probabilities.  In the upper panel we see the estimation 

results for regime one.  This regime corresponds to observations that the Markov 

estimation found to come primarily from state two.  This state has a lower (more 

negative, i.e. higher in absolute value) mean and a lower variance than state one.  The 

observations from this state make up the majority of the sample, which is consistent with 

the estimated transition probability of 0.05 for exiting state two.  The lower mean is 

consistent with the general bearish or falling market for the week in question.   

 

Comparing the estimates from the upper panel, which correspond to regime one, with the 

overall estimation in the bottom panel, we see that the coefficients are all significant at 

conventional levels and signed as predicted.  The adjusted R2 is almost twice that of the 

baseline model, even though the sample size is reduced by over 35%.  Looking at the 

asymmetric information effect, as measured by the coefficient on orderflow, Qjt, we see 

that in regime one, the dealer does not shade his price against asymmetric information as 
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much as in the general model.  This is consistent with a lower variance in the price as 

estimated by the Markov switching model.  In the baseline model the dealer increases his 

spread by 2.8 pips (0.00028 DM) per $10 million to protect against adverse selection 

(which is twice the coefficient on Qjt). In this regime we predict that the dealer�s spread 

will increase by 1.8 pips, or 33% less wide, for the same quantity.  The coefficient on 

inventory reflects the amount of price shading that the dealer engages in to adjust 

inventory levels.  Here we see that for a unit increase in inventories, a dealer lowers his 

price less in this regime than in the overall model.  The coefficient on lagged inventory is 

also lower, since the dealer must raise his price less to adjust for the previous trade�s 

inventory imbalance.  The coefficients on the orderflow indicator (DEEt in the chart) 

measure the effective spread after we take into account inventory and information effects.  

In this model, the dealer has a wider spread than in the baseline estimates; the spread is 

twice the coefficient on DEE, or 2.38 pips.  

 

For the second regime, we are looking at or in the neighborhood of the estimated Markov 

state one observations.  State one was estimated to have a higher negative mean (lower in 

absolute value) than state two, and a lower variance.  The estimates for the region we 

characterized as regime two showed a much wider increase in the estimated spread to 

protect against adverse selection, as measured by the coefficient on Qjt.  Here the dealer�s 

spread is 33% wider than the baseline model.  More importantly, signed orderflow is not 

significant at the five percent level in this regime (with a p-value of .0721).  Additionally, 

the inventory effect is magnified in this regime, so prices adjust more poignantly to 

uncovered inventory positions, and consequently adjust more quickly to lagged inventory 
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imbalances (as measured by the coefficients on It and It-1, respectively).  The signed 

orderflow indicators (DEEt and DEEt-1) are significant at conventional levels, and while 

not as highly significant as in regime one, are of about the same magnitude.  They also do 

not satisfy the model prediction of having a higher coefficient (in absolute value) on Dt 

than Dt-1.  Finally, the adjusted R2 is higher than the baseline model, even though the 

sample size for regime two is over 70% smaller.  From all this we can characterize 

regime two as one in which inventory plays a more important role than orderflow in 

predicting price changes.    

 

For regime three, given that we have only 49 observations, or about 5% of the sample, it 

is not surprising to see that most of the coefficients are insignificant at conventional 

levels, especially considering the heavy intervention of the Fed.  What is surprising is that 

orderflow is more significant in regime three than regime two, and comes in at almost ten 

times the size of the baseline estimate.  This regime represents the foreign exchange 

market activity as the Fed intervenes repeatedly, and in a short period of time, to support 

the dollar.  Clearly, as the Fed forces the price upwards, our dealer reacts by increasing 

rapidly his price, and maintaining a wide spread.  The coefficient on Qjt shows a spread 

of 26 pips, and is significant at the five percent level, whereas the other coefficients are 

not remotely significant at any conventional level. 

 

Finally, we report results for a traditional F-test for multiple joint structural breaks at the 

points predicted to be breaks in the sample, i.e. points 50, 96, 551, 741, and 795, in 

accordance with figure (14).  The results are presented below in figure (17).  
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Bia and Perron Test for Multiple Structural Breaks 

We now turn to segregating the sample according to the statistical method discussed in 

section VI.  The test based on the Bai and Perron (1998) sup-F test statistic for multiple 

structural breaks found (exactly) one breakpoint at observation 449, at better than one 

percent significance level.  The computation of the test statistic, however, required 

imposing assumptions about the location of the breakpoints.  These assumptions required 

that the breakpoints be asymptotically distinct, and bounded away from the ends of the 

sample by a proportion of no less than 0.05 of the sample size.  While the requirement 

that breakpoints be asymptotically distinct turned out to be inconsequential, the second 

requirement is of more concern.  With 838 observations, five percent of the sample 

represents 42 observations.  Hence, as stated in the previous section, we cannot expect 

the test to pick up a break after the observation that is 43rd from the end of the sample, or 

observation 795.  Because our prior is that intervention by the Fed is a structural break in 

intraday foreign exchange activity, and because an intervention by the Fed occurred at 

around observation 795, we impose a breakpoint on that date.  We report results for 

estimations both with and without the breakpoint at 795 in what follows.  

 

In figure (18), we see results for the Bia and Perron sample split.  We will call the 

observations prior to the first break (449) regime one.  What is most striking about this 

regime is that inventory and lagged inventory are not even remotely significant.   In this 

regime the adjusted R2 of 0.32 is much higher than the baseline estimates, all coefficients 

are signed properly, the data is continuous, in chronological (event-time) order, and is 

over 53% of the available observations.  All this withstanding, inventory plays no role in 
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the price determination.  This, while signed orderflow (i.e. the asymmetric information 

effect) and the orderflow indicators are significant, and estimated at magnitudes similar 

to the baseline estimates, including an estimated spread of 2.6 pips per $10 million to 

protect against adverse selection.   

 

We refer to the estimates from the sub-sample 449 to 794 as the second regime, which 

are reported in the second panel.  Here the estimates show orderflow to be 

inconsequential to the dealer, and the inventory components to be highly significant.  

Furthermore, with just 34.5% of the available observations, the adjusted R2 is estimated 

at 0.29, higher than the adjusted R2 of 0.22 of the baseline estimate, which is estimated 

with all available observations.  All coefficients here are signed properly, however, the 

estimates fail to satisfy the prediction that the coefficient of DEEt be greater than the 

absolute value of the coefficient of DEEt-1.  The change in price per $10 million dollars of 

uncovered inventory is estimated at �2.04 pips, while the same for lagged inventory is 

1.84.  These magnitudes are more than double their counterparts in the baseline estimate, 

indicating much more aggressive inventory management, in sharp contrast to regime one.   

 

The third regime comprises the sample ranging from observation 795 to 838.  This break 

represents the market under the Fed intervention.  While the sample size is small, there is 

enough explanatory power in the sub-sample to bring attention to orderflow, Qjt.  In 

similar fashion to the Markov results, the orderflow coefficient is significant at the 10% 

level (with a p-value of 0.064) and measures 14.1, which implies a spread of 28 pips.  All 

other regressors are highly insignificant in this subsample, and have the opposite of their 
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predicted signs.  With just five percent of the sample recording a market intervention by 

the Fed, it is not surprising to see a low adjusted R2.   

 

In the third panel, we report the results of combining regimes two and three.  Here we 

ignore the predicted break at observation 796, and hence the results, for a subsample with 

46% of the available observations, are poor.  The model does not fit this subsample well.  

The adjusted R2 is lower than the baseline model, the orderflow indicators do not satisfy 

the predicted relationship, and while the coefficients are signed correctly, some are not 

significant at the five percent level (i.e. DEEt and MA(1)). 

 

Finally, we report the traditional F-test for structural breaks at observations 449 and 796 

below.  Note, however, that this is less powerful than the Bai and Perron test used to find  

these breaks.  
 

F-Test  

So far, the Markov and Sup-F tests have yielded results that would suggest parameter 

instability in the relationships estimated by equation (25), and a more dynamic 

relationship between the regressors and the left-hand-side variable.  In the interest of 

guarding against sample selection bias, we include estimates of the baseline equation 

over subsamples where the breakpoints are determined where the p-value of the F-test 

reaches a local minimum in the rolling F-test estimation depicted in figure (11).  This 

rolling test reaches three local minimums at conventional significance levels.  These are 

(p-values in parenthesis) observations 505 (0.023), 699 (.009), and 722 (.031).  As 

mentioned previously, the F-test has no power to discriminate between one break and 
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three. At these points the null of no break was rejected in favor of one break.  The Sup-F 

test rejected the alternative of two breaks (within the adjusted sample), as well as that of 

three breaks, against a null of one break.  Because, however, the Sup-F test statistic 

cannot find breaks that are within five percent of the end of the sample we cannot waive 

hands and eliminate the possibility of a break there.  This and the search for a 

generalization of parameter stability that is robust to sample selection leads estimate the 

equation over these subsamples. 

 

Figure (20) gives the results of the estimation based on the aforementioned breakpoints.  

The same general pattern emerges here as with the Markov and Sup-F breakpoints.  At 

the beginning of the week, during the more tranquil periods, orderflow is significant at 

conventional levels, and inventory is not.  As the market enters a sharper downturn at the 

beginning of Thursday, a breakpoint emerges in which orderflow becomes insignificant, 

and inventory becomes significant.  Finally, at the end of the week, with the Fed 

intervention, orderflow again becomes significant, but generally speaking the model fails.   

 

Following the convention of the previous sections, we can refer to regime one as the 

estimation of the top panel of figure (18).  Here orderflow and the directional indicators 

are highly significant, whereas inventory is not.  Furthermore, the adjusted R2 is higher 

than baseline estimates.  Regime two (the second panel) shows inventory becoming 

highly significant, and signed orderflow insignificant.  Here, the directional indicators of 

orderflow are still significant, and the adjusted R2 is at about the level of the baseline 

estimate (with 88% less observations used to fit the model).  The third regime shows a 
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striking contrast with the baseline model.  Both inventory and its lag are highly 

significant, and there is no role for orderflow, or its directional indicators.  What is more 

remarkable is the adjusted R2 of 0.65 with less than 3% of the sample used to fit the 

model.  Finally, the last regime reports only orderflow as significant, and the usual poor 

fit of the model towards the end of the sample. 
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VIII.  Non-Parametric Estimation 
 

Given the extent of the variability in the model estimates reported in the previous section, 

a natural question that arises is that of whether the model itself is inappropriate for 

estimating the relationship between the stipulated variables.  Our prior is that this is not 

the case.  We attempt to look for alternatives that depart from the theory and do not 

impose the structure of the parametric model.  The casual observation of the dprice series 

reveals its erratic nature.  One non-parametric alternative is a kernel.  A kernel estimate 

attempts to find a smooth non-linear function that can fit this series, and give the 

conditional expected value of the left-hand-side variable as a non-linear function of the 

right-hand side variables.  Because it does not rely on a structural model, a kernel is a 

viable alternative for estimating the data generating process in the case where the 

structural model based on theory is unsuccessful. 

 

We proceeded by fitting a multivariate gaussian kernel using the right hand side variables 

of equation (25) as the arguments of the function.  We selected the bandwidth 

endogeneously based on the scaled comparison of the interquartile range of the datapoints 

to the sample standard deviation.  The results are shown in figure (21).  The estimated 

kernel fit the data poorly as the conditional expected value of the price change.  The 

estimates of the derivatives were of unreasonable magnitudes, due in part to the poor fit 

of the kernel.  The function was unable to pick up the majority of the dynamics in the 

price change series, and from the figure we can see that it does not look like the data.  
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Given these results, we maintain that the data generating process for the function is more 

piecewise linear, and we do not abandon the model of section two. 
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IX. Conclusion 
 

This paper has looked at the issue of whether the microstructural hypotheses regarding 

the presence of asymmetric information and inventory effects in the process of price 

determination in the foreign exchange markets should be modified to take into account 

relative changes in the intensity of the effects.  We find evidence not just of the presence 

of these effects in the process of price determination in these markets, but rather that 

there is a tradeoff between these effects.  In subsamples where the price is more volatile, 

the market more hectic, we find inventory to be more important in the pricing decision of 

the dealer.  We find that these effects are muted by the baseline regression.  We find that 

orderflow is more important for the dealer in subsamples when trading is occurring over 

less dramatic price ranges.  Improvements in the estimation and testing of the 

microstructural hypothesis can be achieved by a piecewise linear specification, and the fit 

of the model can be unambiguously improved by reducing sample size over fewer trades, 

where the aforementioned effects are not played off against each other (i.e. trades in the 

same regime).  Finally, we find that the model fails in explaining pricing behavior when 

the Fed intervenes to force the price of the dollar upwards.  In this case the only variable 

that has any explanatory power is orderflow.  When the Fed intervenes, we find that 

orderflow is significant at much larger magnitudes than during other periods of trading.  

These results suggest that the dealer inventory and orderflow compete in terms of their 

influence over prices, and that changing market conditions dictate the relative benefits of 

using one over the other in pricing foreign exchange.   
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Previous theoretical work presents the issue in terms of either inventory effects or 

asymmetric information effects (i.e. orderflow) being the predominant driving force 

behind foreign exchange prices.  Previous empirical work finds that both are present.  

This paper finds that while both are present, they are not necessarily present 

simultaneously within samples.  Instead, their role as the driving force behind foreign 

exchange price dynamics adjusts to and is dictated by market conditions. 
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Appendix A 
 

Figure 2 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. In the upper panel we see the price of one US Dollar in terms of Deutschemarks for the trading week of August 3-7, 1992.  

In the panel below we see change in price.  For both  panels, the abscissa gives the observation number, and the ordinate gives the 

price or price change in 0.0001DM�s, also called pips.The discrete jumps in the price (and corresponding outliers in dprice) are 

overnight changes that we discard.  The upturn in the price of the dollar at the end of the week corresponds to the intervention of the 

Fed.   
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Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. In the upper panel we see orderflow.  In the middle panel, inventory, and in the lower panel, brokered trading, for the week 

of August 3-7, 1992.  The abscissa gives the observation number, and the ordinate gives quantity in millions of US dollars. 
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Figure 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Above are estimated results for equation (25).  The last column shows the predicted sign of the coefficients from the 

model.  Below we see the adjusted R2 as well as other goodness of fit statistics. 

Variable Coefficient Std. Error t-Statistic Prob.  Predicted

C -1.21E-05 1.35E-05 -0.895035 0.371
QJT 1.47E-05 4.65E-06 3.158934 0.0016 >0
INVENT -9.22E-06 2.72E-06 -3.391972 0.0007 <0
INVENT(-1) 7.32E-06 2.62E-06 2.793635 0.0053 >0
DEE 0.000101 2.16E-05 4.695455 0 >0
DEE(-1) -8.98E-05 1.47E-05 -6.120262 0 <0
QT 6.85E-06 3.11E-06 2.199042 0.0282 >0
MA(1) -0.087047 0.034841 -2.49839 0.0127 <0

R-squared 0.22419     Mean dependent var -2.13E-05
Adjusted R-squared 0.217615     S.D. dependent var 0.00047
S.E. of regression 0.000416     Akaike info criterion -12.7227
Sum squared resid 0.000143     Schwarz criterion -12.6774
Log likelihood 5313.376     F-statistic 34.09903
Durbin-Watson stat 1.994299     Prob(F-statistic) 0

Inverted MA Roots 0.09
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Figure 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Above are estimated results for Markov switching in the change in price.  The left axis measures the probability of a 

switch, and the right axis measures price.  We see price superimposed onto the switching probability.  Hence, we see that when the 

price is turbulent, the probability of being in regime one is very high. 
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Figure 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Above are estimated results for Markov switching in the residuals of equation (25) along with the price superimposed.  We 

can observe that the residuals switch at the same time as the change in price.  Hence the right hand side variables have not accounted 

for Markov switching (the right axis is inverted for presentation purposes). 
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Figure 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Above we see the coefficient of Qjt from a window of 150 observations beginning with the observation indicated on the 

abscissa.  The left axis measures the value of the coefficient, which is indicated by the QJT line, and the right axis measures the t-

statistic of this coefficient, which is indicated by QJT P.   
 
Figure 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.    Here we see the coefficient on inventory for the 150 sample-size window rolling regression.  INV indicates the coefficient 

value, which is measured on the left axis, INV P measures its t-statistic, and the abscissa measures the first observation of the window. 
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Figure 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.    Here we see the coefficient on the rolling regression on the lagged inventory for the 150 sample-size.  INV(-1) indicates 

the coefficient value, which is measured on the left axis, INV P(-1) measures its t-statistic, and the abscissa measures the first 

observation of the window. 

 
Figure 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.    The adjusted R2 for the rolling regression on a window of 150 observations beginning with the observation indicated in 

the abscissa.  Compared with the original full-sample regression of R2=0.22, the R2 for the rolling regression is greater than 0.22 

throughout most of the sample. 
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Figure 11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.    The rolling breakpoint test measures if the point indicated in the abscissa is a breakpoint, with P-value indicated in the 

ordinate.  We calculate this for both the F-test and the Likelihood Ratio test.  Above we can see one probable breakpoint in the middle 

of the sample, indicating a possible break around the end of Wednesday, beginning of Thursday in the one-week sample.   Other 

probable breakpoints are toward the end of the sample at 699 and 722. 

 
Figure 12 
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Figure 12.    Above we give the specification for the Wald test.  The breakpoint is recorded on the abscissa and the p-value on the 

ordinate.  Again, this test serves as evidence supporting breaks in the coefficient values within sample.  
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Figure 13 
 

 

 

 

 

 

 

 

 
 
Figure 13.    Above we give the results for the Bai and Perron tests for multiple structural breaks.  In the left panel we report the test 

with no fixed regressors across the entire sample.  The left column (of that panel) reports �none� for no fixed regressors, the middle 

reports the number of break points found, and the right reports the location(s) in the sample of the breakpoint(s).   In the right panel 

we report the results for one fixed regressor.  The fixed regressor is given on the left (of the right panel), the number of breaks found is 

given in the middle, and the location of the break(s) is given on the right.  For It results were found at the 2.5% and 1% significance 

level, and both are reported.  For comparison, the dates of overnight changes are reported in column one, so as to clarify that the 

reported breaks do not (necessarily) correspond to overnight changes. 

 
Figure 14 
 

 

 

 

 

Figure 14.   Above is depicted the regime selection based on the smoothed probability of being in state 1 on the observation in 

question.  The first regime is made up of three disjoint segments; they are: (1,49), (96, 549), (741, 794).  The second regime has two 

disjoint segments; they are (50, 95) and (550, 740).  The third regime starts at observation 795, and goes to the end of the sample.   

Structural Breaks
All Estimates are without Bt
Fixed Break(s) Point(s) Fixed Break(s) Point(s)
(p=0) (p=1)
None 1 449

Q(jt) 1 449
I(t) (@1%)

3 167
558
691

(@2.5%)
167
416

Sample changes days on 558
mon-tue 182 691
tue-wed 331 D(t) 1 446
wed-thu 440 I(t-1) 0 na
thu-fri 593

D(t-1) 0 na

Regime 1 
Obs. 1 to 49 

Reg 2 Obs 550 
to 740 

Reg 
3 
Obs 
795 
on. 

Regime 1 
Obs 96 to 549 

Reg. 1 
Obs 741 
to 
794 

Reg. 2 
Obs 50 
to 95 

Total Sample, 1 to 838. 
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Figure 15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.   Above we see the graph for regime two in the top panel, and the graph for regime three in the bottom panel.  The dark 

lines show the areas of the state probabilities that determined the regimes.  In the upper panel, there are two pairs of dark lines that 

bound the sample area of regime two.  Within these lines, we can see the probability of being in state one approach unity.  In the 

lower panel, at the rightmost part of the graph, we see a pair of dark lines that bound regime three.  This is the regime of the Fed 

intervention, and within we can see the probability jump to unity and maintain the level.     
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Figure 16 

Figure 16.  Above se see the estimation results for the estimation of regimes one, two and three, and also for the original equation.  

Each panel shows the sample size, the coefficient values, and the p-value of the t-statistic. All coefficients are multiplied by 10exp4 

except the MA(1).   

 
Figure 17 

 
Figure 17.  F-test for parameter stability, we reject the null hypothesis of no breaks in favor of our stipulated breaks at 1% 

significance level.   

Sample(adjusted): 2 553 IF REGIMES=1

Variable C QJT INVENT INVENT(-1) DEE DEE(-1) JUMPS MA(1) Rbar2
Coefficient -2.14 0.941 -0.833 0.697 11.9 -8.25 -79.5 -0.181077 0.383105
Prob.  0.0326 0.0111 0.0002 0.0012 0 0 0 0
Sample(adjusted): 554 789 IF REGIMES=2

C QJT INVENT INVENT(-1) DEE DEE(-1) JUMPS MA(1) Rbar2
Coefficient -3.07 1.81 -1.45 1.18 11.4 -12.9 29 -0.126656 0.23974
Prob.  0.2772 0.0721 0.0095 0.0292 0.018 0.0001 0.5481 0.0585
Sample(adjusted): 790 838 IF REGIMES=3

C QJT INVENT INVENT(-1) DEE DEE(-1) JUMPS MA(1) Rbar2
Coefficient 13.9 13.8 1.79 -1.94 -30.9 -4.75 0.099181 -0.034627
Prob.  0.3936 0.0444 0.4228 0.3849 0.214 0.7508 0.5372
Original Estimation of Equation (25)

C QJT INVENT INVENT(-1) DEE DEE(-1) JUMPS MA(1) Rbar2
Coefficient -1.25 1.43 -0.914 0.721 10.4 -9.21 -0.088931 0.219641
Prob.  0.3556 0.0021 0.0008 0.0062 0 0 0.0108

Chow Breakpoint Test: 50 96 551 741 795 

F-statistic 1.5924     Probability 0.017055
Log likelihood r 56.718     Probability 0.011538
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Figure 18 

Figure 18.  Above the sample is subdivided into three areas, with breaks at observations 449 and 795, per Sup-F test.  The top panel 

reports the first segment, observations 1 to 448.  The second panel reports from observations 449 to 794.  The third panel reports from 

observation 795 to 838.  The fourth panel reports results from observation 449 to 838, in effect skipping the stipulated break at 795.  

The final panel reports the original estimation of equation (25). 

   
Figure 19 

 
Figure 19.  F-test for parameter stability, we reject the null hypothesis of no breaks in favor of our stipulated breaks at 1% significance 

level.   

Bai and Perron Sup-F Statistic
Sample(adjusted): 2 448

C QJT INVENT INVENT(-1) DEE DEE(-1) MA(1) Rbar2
Coefficient -1.7 1.3 -0.354 0.122 12.5 -8.85 -0.20472 0.324832
Prob.  0.1614 0.0046 0.2031 0.647 0 0 0
Sample: 449 794

C QJT INVENT INVENT(-1) DEE DEE(-1) MA(1) Rbar2
Coefficient -3.17 0.897 -2.04 1.86 11 -11.2 -0.1023 0.29919
Prob.  0.1375 0.1885 0 0 0.0006 0 0.0612
Sample: 795 838

C QJT INVENT INVENT(-1) DEE DEE(-1) MA(1) Rbar2
Coefficient 16.9 14.1 3.32 -2.66 -25.3 0.292 0.107834 -0.04893
Prob.  0.3459 0.0643 0.3796 0.4242 0.3678 0.9864 0.5313
Sample: 449 838

C QJT INVENT INVENT(-1) DEE DEE(-1) MA(1) Rbar2
Coefficient -0.621 1.73 -1.64 1.45 7.16 -10.1 -0.04547 0.174611
Prob.  0.8189 0.0431 0.0008 0.0018 0.0658 0.0002 0.375
Original Estimation of Equation (25)

C QJT INVENT INVENT(-1) DEE DEE(-1) MA(1) Rbar2
Coefficient -1.25 1.43 -0.914 0.721 10.4 -9.21 -0.08893 0.219641
Prob.  0.3556 0.0021 0.0008 0.0062 0 0 0.0108

Chow Breakpoint Test: 449 795 

F-statistic 4.173755     Probability 0
Log likeliho 57.88762     Probability 0



 62 

Figure 20 

 
Figure 20.  Breakpoints based on Rolling F-test for parameter stability.  The breakpoints are given as the first point in each subsample. 

.   

F-Test Breakpoints
Sample(adjusted): 2 508

C QJT INVENT INVENT(-1) DEE DEE(-1) MA(1) Rbar2
Coefficient -1.91 1.27 -0.488 0.227 12.6 -8.67 -0.21988 0.344391
Prob.  0.0781 0.0029 0.0603 0.3636 0 0 0
Sample: 509 699

C QJT INVENT INVENT(-1) DEE DEE(-1) MA(1) Rbar2
Coefficient -2.15 1.28 -1.65 1.48 10.5 -12.5 -0.05374 0.227315
Prob.  0.5654 0.1924 0.0057 0.0102 0.0335 0.0003 0.4739
Sample: 700 722

C QJT INVENT INVENT(-1) DEE DEE(-1) MA(1) Rbar2
Coefficient -8.53 -4.58 -5.53 5.13 30.2 1.99 -0.98995 0.655636
Prob.  0.0076 0.2538 0.0002 0.0002 0.1367 0.8141 0
Sample: 723 838

C QJT INVENT INVENT(-1) DEE DEE(-1) MA(1) Rbar2
Coefficient 3.74 4.89 -0.457 0.463 -5.54 -6.62 0.048266 0.045433
Prob.  0.5995 0.0495 0.7288 0.7013 0.5909 0.323 0.6171
Original Estimation of Equation (25)

C QJT INVENT INVENT(-1) DEE DEE(-1) MA(1) Rbar2
Coefficient -1.25 1.43 -0.914 0.721 10.4 -9.21 -0.08893 0.219641
Prob.  0.3556 0.0021 0.0008 0.0062 0 0 0.0108
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Figure 21 

 

 

 

 

 

 

 

 

           

 

Figure 21.  Above are is the Kernel with the series dprice.  The higher series is the price change for the week of August 3-7, 1992.  

The lower series is the estimated kernel. 
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Appendix B 
 

Here we present a brief summary of the economic conditions on the week of August 3 

through August 7, 1992. 

 

Monday, August 3, 1992:  In early June, the Dow Jones Industrial Average had climbed 

to an all time high above 3400.  The dollar was weak as the US economy was recovering 

from the 1990-1991 recession.  On July 16, 1992 the Bundesbank raised its discount rate 

by 75 basis points to 8.75%.  This forced the Federal Reserve to mount an intervention 

campaign.  The Bundesbank was trying to fight inflation, reduce the money supply, and 

at the same time deal with the fiscal expansion resulting from the reunification of East 

Germany.  It was reported in the financial press that traders and foreign exchange 

analysts predicted that the July 1992 US employment report would show improvemint in 

the US economy, and hence push the dollar upward.  It was clear that this report would 

determine the direction of the dollar.  Japanese traders were concerned with Tokyo share 

prices, and the future direction of the US economy as well.  Trading was confined to 

dealers, with many customers such as exporting companies absent from the market.  

Trading settled into a narrow range, and the market was described as dull.   

 

Tuesday, August 4, 1992 � The dollar was quoted unchanged from the previous session.  

The bank of Italy cut the discount rate to 13.25%, but there was no significant move on 

the Dollar/DM market by day�s end.  Trading was described as lethargic in the 

traditionally slow month of August, as dealers marked time for the release of the 
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employment report.  The currency was locked into a narrow trading range.  The Japanese 

markets were in the same narrow trading range, and the financial press reiterated 

expectations of a dollar increase as the employment report for July was released.  The 

summer holidays also contributed to the narrow and quiet market.  The threat by an 

unnamed official from the Bank of Italy of intervention in the market to keep the dollar 

from going lower boosted the dollar in European trading.  Later, when it was reported 

that US Construction spending fell by 1.5% in June, and the National Association of 

Purchasing Managers Index rose to 54.2% from 52.8%, with supplier deliveries the 

slowest since March 1989, the dollar lost ground in European trading, and again in New 

York.  There was a question about whether central bankers, particularly the Fed, were 

willing to see the dollar fall past its historic low of DM1.4470.  The threat of intervention 

is what kept short sales at bay.   

 

Wednesday, August 5, 1992 � On Tuesday the dollar inched higher with most of the 

market awaiting the July employment report set to be released Friday.  The markets were 

reported to have shrugged off the index of US leading indicators for June.  The 

employment report was described as the watershed in market sentiment toward the dollar 

for the rest of the month.  One report described the potential for disappointment as having 

the ability to bring the selling out and to test the central banks� resolve to defend the 

dollar.  In Japan, trading was light, and the dollar closed almost unchaged as people 

optimistically awaited the employment numbers.  Gains in the Tokyo stockmarket had no 

effect on the dollar.  Dealers also awaited the meeting of Bundesbank officials on 

Thursday to see if they would continue to raise interest rates, however this was generally 
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viewed as unlikely.  Optimism over the employment report seemed to be the overriding 

market sentiment.   

 

Thursday, August 6, 1992 � The dollar drifted higher in New York trading on 

Wednesday, gaining against the DM, as well as the yen.  On Thursday morning, Japanese 

trading was directionless, and good employment numbers were reported to be widely 

expected.  The dollar ended up closing higher against the yen in Japanese trading.  The 

British pound fell, and unemployment numbers for Germany were reported to be higher.   

 

Friday, August 7, 1992 � Thursday�s US stocks fell on disappointing earnings reports for 

the third time in three sessions.  The dollar ended mostly lower after New York trading 

Thursday, as participants took profits ahead of the employment report that was released 

that Friday.  Most economists were reported to be forecasting an improvement in the 

nations employment situation.  Dealers believed that if the report met expectations, the 

dollar could go to DM1.5.  The dollar also received a boost from the decision by the 

Bundesbank to not raise interest rates on Thursday.  On Friday, the dollar eased against 

the DM in Japanese trading.   

 

Saturday, August 8, 1992 � Shortly after the London markets closed on Friday, the 

Federal Reserve bought dollars four or five times at levels ranging from DM1.4675 to 

DM1.473.  The intervention lifted the dollar, but it drifted lower by the end of New York 

trading.  This was due to a disappointing employment report released on Friday.  The 

dollar was reported to have risen quickly when the Fed intervened, climbing one pfennig 
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in ten minutes, from 1.47DM to 1.475DM.  Comments by Helmut Schlesinger suggested 

that the concerted central bank intervention in July had been a one-off event, and this 

caused traders to test the resolve of the central bank to avoid new lows for the Dollar.   
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