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Abstract 
Central bank surveys taken in 2001 indicate that the use of electronic brokerage systems account for 
the following shares of inter-dealer spot foreign exchange market turnover: New York, 54%; 
London, 66%; and Japan, 48%.  This share is up sharply from that reported in the last surveys taken 
in 1998.  While the surveys point out the rapid growth of electronic brokers as an important FX 
institution, there has been no research on the microstructure issues that lead traders to choose 
electronic brokerage (EB) over the historically dominant, and still quite relevant, institution of direct 
dealing where bilateral conversations (either telephone or electronic) occur between two FX traders 
and a deal is struck.  We provide theory and empirical analysis to further our understanding of the 
choice of trading venue in foreign exchange.   
 
Our theoretical model analyzes the choice of trading venue for “large” and “small” traders.  The 
theory illustrates the importance of asymmetric information, transaction costs, and speed of 
execution. The most likely equilibrium has large traders trading with dealers while small traders 
utilize the EB.     
 
The empirical analysis utilizes data on limit orders submitted to the Reuters 2000-2 EB system. We 
focus on the duration of time between order submission and finding a match for trade execution.  An 
autoregressive conditional duration (ACD) model is specified using the Burr distribution. Given the 
price competitiveness of an order, duration is increasing in order size.  Because of this longer 
duration for large orders on the EB, large traders will prefer the direct dealing market to the 
brokerage.  We also find that the greater the depth of the market, the shorter the duration of orders 
of all sizes.  This result is consistent with traders clustering in time to submit orders so as to increase 
the probability of finding a match. 
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1.  INTRODUCTION 

 

One of the most dramatic shifts in the market structure of international financial 

markets has been the rise in the use of electronic brokerage or crossing networks to trade 

currencies.  In the last triennial survey of foreign exchange trading taken in April 2001, 

the Federal Reserve Bank of New York (2001) reports that the use of electronic 

brokerage systems such as EBS or Reuters 2002 accounts for 54 percent of total turnover 

in U.S. inter-dealer spot foreign exchange market trading.  This is up from less than a 

third of total spot market turnover in 1998.  Prior to the 1998 survey, electronic brokerage 

volume was quite small.  Similarly, the Bank of England (2001) reports that over 2/3 of 

U.K. inter-dealer spot trading volume is now conducted using electronic brokers, 

compared to about 30 percent in 1998; and the Bank of Japan (2001) reports that 

electronic brokers account for 48 percent of Japanese inter-dealer spot vo lume today 

compared to 37 percent in 1998.  In all cases, the electronic brokers have grown to their 

current popularity while starting from a base of zero with their introduction in 1992.  

While the recent survey points out the importance of electronic brokers as an institution, 

there has been very little research to date on the microstructure issues that lead traders to 

choose electronic brokerage over the historically dominant, and still quite relevant, 

institution of direct dealing where bilateral conversations (either telephone or electronic) 

occur between two traders and a deal is struck. 

We seek to provide theory and empirical analysis of the issue in order to further 

our understanding regarding the choice of trading venue in foreign exchange.  In equity 

trading, a literature has developed that addresses the choice of trading through a specialist 
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or on an electronic crossing network (ECN).1 As one might expect, issues of asymmetric 

information, transaction costs, and speed of execution are important.  While the equity 

market studies have furthered our understanding, to our knowledge, there has been no 

study that provides a theoretical model for the choice of foreign exchange trading venue 

or provides related empirical analysis. 

The paper is divided into four parts.  Following the introduction, a theoretical 

model is developed in Section 2 that analyzes the choice of trading venue for large and 

small traders.  The most likely equilibrium of the model has large traders trading with 

dealers while small traders utilize the electronic brokerage (EB).  Section 3 presents an 

empirical analysis utilizing data from the Reuters 2000-2 electronic brokerage system.  

The analysis focuses on the duration of the time between submitting an order and finding 

a match and a trade.  An autoregressive conditional duration (ACD) model is specified 

using the Burr distribution rather than the usual exponential distribution assumed for the 

residual.  The gain is that of moving from a flat, constant hazard function of the 

exponentia l ACD to a non-monotonic hazard of the Burr ACD that allows the hazard to 

vary with duration time. The estimation results support the Burr functional form over the 

more common exponential or less common Weibull ACD models.  In terms of the 

testable hypotheses suggested by the theory of Section 2, we find that it is important to 

condition inference on price competitiveness of orders.  Given the price competitiveness 

of an order, duration is increasing in order size and decreasing in market depth.  Finally, 

Section 4 offers a summary and concluding discussion.

                                                 
1 For examples see Katz & Shapiro (1985), Pagano (1989), Chowdhry & Nanda (1991),  Glosten (1994), 
Parlour & Seppi (1998), and Hendershott & Mendelson (2000). 
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2.  CHOICE OF TRADING VENUE: THEORY 

 

The direct dealership market and the electronic crossing network provide two 

trading venues competing for order flow in the foreign exchange market. An important 

benefit provided by the electronic crossing network is the lower transaction cost relative 

to the dealer’s bid-ask spread. A disadvantage is the lack of assurance of an immediate 

execution of transactions. So the transaction cost and immediacy of execution are the two 

key issues to be taken into account when a trader decides where to trade. In this section, 

we develop a model to describe the multi-market trading opportunities and the associated 

trader’s choice problem. By examining the equilibrium, we can relate the model results to 

some of the stylized facts of foreign exchange trading. 

2.a. Model Specification 

We begin by assuming that there are two competing venues where currency can 

be traded: the dealer’s market (DM) and the electronic brokerage (EB). We construct a 

theoretical model of the market by specifying the players, the costs they face, available 

strategies, probabilities of order execution, and the equilibrium as follows: 

2.a.1. Players: 

There are a large number of small traders who trade only one unit of the currency, as well 

as a larger trader who trades a large amount lλ . Each trader receives a value from trading 

one unit of u. In general, u may be determined by a trader’s liquidity preference, risk 

aversion, or other factors that determine a trader’s demand for immediacy or urgency to 

trade.  

2.a.2. Transaction Cost: 
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The cost of trading includes commissions, fees, taxes, the bid-ask spread, the 

price impact of a trade, and the cost associated with price movements if a trade cannot be 

executed immediately. Traders need to pay s per unit of currency at the dealer’s market to 

have their orders executed with certainty.  On the EB, traders trade among themselves 

without the intervention of market makers and pay a transaction cost per unit of c (c<s). 

Also traders would take into account the potential delay until a match is found on the 

crossing network by discounting the value of trading by a factor δ . So the net value of 

trading u c−  multiplied by δ  reflects the value of trading on the crossing network 

adjusted for expected time to find a matching order.  The determination of δ will be 

specified next. 

2.a.3. Accounting for expected duration of orders on the crossing network 

After a trader submits his order to the crossing network, it may take some time to 

find a match. Duration is used to measure the “ waiting time” on the crossing network. 

Duration is the time between order submission and order execution for a filled order. For 

a failed order, it is the time between order entry and order removal.  We specify duration 

as follows.  Let β  represent the common discount factor of the traders (0<β<1).  Let 

ts ( tl ) be the (random) number of periods it takes for a small (large) trader to find a 

match on the EB.  The expected discount factor for large traders is then tlElδ β=  while 

for small traders it is tsEsδ β= .  Assume that ts  is distributed according to a 

cumulative distribution function F ( t ) P(t t )s s= ≤ and tl is distributed according to 

F ( t ) P(t t )l l= ≤ .  Furthermore, assume that for any value t, F ( t ) F ( t )l s≤  or Fl  

dominates Fs  in terms of first-order stochastic dominance.  This implies that Et Etl s≥  
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and t tl sE Eβ β≤ .  Then the expected payoff for a small trader submitting an order is 

t ts sE ( u c ) ( u c)E ( u c ) sβ β δ   − = − = −      
 and the expected payoff for a large trader 

submitting an order is t tl lE ( u c ) ( u c ) E (u c )l l l lβ λ λ β λ δ   − = − = −      
. 

The model just presented proposes that the duration for small traders, ts , is less than the 

duration for large traders, tl .  We will test this proposition in the empirical section 

below.  In particular, we estimate the conditional hazard function as a function of order 

size.  Conditional on all available past information (all past duration times), the 

conditional hazard function measures the rate at which order durations are completed 

(matches are found and trades executed) after i 1t − , given that the order exists at i 1t − . In 

other words, the conditional hazard function gives the expected number of trades in the 

next time interval greater than i 1t −  given that orders have been submitted to the crossing 

network at i 1t − .  Since it takes several small orders on the other side of the market to fill 

one large order, we may expect the duration time for a large order, tl , to be longer 

compared to duration for small orders, ts .  However, this is really an empirical question 

as it is possible to observe hazard functions under reasonable parameterizations where the 

value of the hazard function is increasing in duration for a certain range.2  Such hazard 

functions have the hazard increasing in small durations and decreasing in large durations.  

Given the possibility of such a hazard for trade on the crossing network, it is not possible 

to state, a priori, that large orders will have a smaller hazard than small orders.  So even 

if large and small traders face the same hazard functions, the incidence of expected trades 

                                                 
2 See Grammig and Maurer (2000) for examples. 
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for large orders in the next time period could, theoretically, be smaller or larger than that 

for small orders.  Our empirical work below will yield evidence on this issue.   

2.a.4. Strategies: 

Consider a simple situation where traders submit their orders to only one of the 

two markets.  At this point the strategy set includes:  1) Go to DM, 2) Go to EB, or 3) 

Don’t trade.  The trader’s decision depends on the expected payoff from trading on each 

market. The payoff from a transaction with a dealer is u s− , while the expected payoff 

from the EB is: ( u c )δ− . In general, one goes to the market with the higher payoff from 

trading. If no positive payoff is attainable at any market, one may simply choose not to 

trade at all. Assume that the expected discount factor, δ , is the same for a group of 

traders. If a trader with u goes to DM, it is easily shown that all the other traders in the 

group with a higher valuation of trade would go to DM. On the other hand, if a trader 

with u  goes to the EB, we know that all the traders with a lower valuation of trade would 

go to the EB. Cutoff values can be calculated by setting the payoffs at the two markets 

equal. 

2.a.5. Equilibrium: 

First we’ll study the simplest version of the model by assuming value from trading u is 

the same among individual traders. Here we’ll study equilibria where given all the other 

traders’ strategy, a trader would have no incentive to switch from one market to the other. 

 

Equilibrium Strategies: 

For any trader, at equilibrium he would: 

Trade with the dealers, if ( u s ) ( u c )δ− > −  and u s− >0 
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Trade on the crossing network, if u s ( u c )δ− < −  and ( u c ) 0δ− >  

Be indifferent to the two markets, if u s (u c ) 0δ− = − >  

Decide not to trade, if ( u c ) 0δ− <  and ( u s ) 0− < . 

Different outcomes obtain for different values of u . 

1) u c< ,  a trivial case since no one would trade. 

2) c u s< < , exclusive EB trading.  

3) u s> , the most interesting case because traders have to compare the payoffs from  

two competitive trading venues. We just focus on equilibria when the dealer’s market 

coexists with the electronic crossing network because it is close to what we see in the 

FX market. Since all small traders have the same value from trading, their decisions 

would be the same. They will either all go to dealers or submit orders electronically 

all together. Then we have two possible equilibria when the two trading venues 

coexist. 

i) Equilibrium 1: The large trader trades with the dealers and small traders go to the 

crossing network. 

For the large trader, we may expect that the payoff from trading with the dealers 

exceeds that on the EB. In equilibrium, large traders trade exclusively with the 

dealers if the following condition holds: 

l l l( u s ) ( u c )λ λ δ− > − , or l lu ( s c ) / (1 )δ δ> − − . 

Similarly small traders trade exclusively with the EB if: s( u s ) (u c )δ− < − , or 

s su ( s c) / (1 )δ δ< − − . 

ii) Equilibrium 2: The large trader trades on the EB and small traders go to dealers. 

This outcome can be easily ruled out since it requires the following condition: 
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( s c) / (1 ) u ( s c ) / (1 )s s l lδ δ δ δ− − < < − − .  If s lδ δ> , then this condition cannot be 

met. 

So from the analysis above, we can see that the dealer’s market and the electronic 

crossing network would coexist side by side when the valuation from trade u falls 

between l l( s c ) / (1 )δ δ− −  and s s( s c) / (1 )δ δ− − . Since we expect the value of the 

hazard function facing the large traders to be lower than that facing the small traders, we 

then also expect l sδ δ< . The empirical analysis below will indicate whether the data 

support this belief.  In this most likely equilibrium, the large trader chooses to trade with 

the dealers while the small traders go to the crossing network.3 

2.b. Stylized Facts 

2.b.1. Size Effect 

The equilibrium expected is consistent with the stylized fact in foreign exchange 

that large traders tend to trade with dealers while small traders go to the EB. Within the 

framework developed above, we now discuss this fact. 

Value from trading 

As we have shown earlier, traders with higher valuations are more likely to trade with 

dealers.  Why might large traders have a higher trade valuation?  Survey evidence has 

suggested that large traders are thought to possess private information about the value of 

the underlying asset, which, in terms of our model, would yield a higher value from 

trading. 4 Or it could be that the large trader is more risk averse so that a quick trade is 

                                                 
3 Note that the distribution of durations is not determined endogenously, as it would be in a general 
equilibrium model in which duration depends on the number of traders that go to the EB.  However, the 
simplified model presented here is intended to shed light on the crucial trade-off that traders face. 
4 Cheung and Chinn (2001) report that surveyed foreign exchange dealers identify a competitive advantage 
to large traders stemming from their large customer base which provides better information on the order 
flow in the market. 
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strongly preferred to the uncertainty of the EB. Since our theoretical model has a 

common trade valuation for all traders, we will not devote our attention to this 

explanation.   

Probability of execution 

As we have argued above, the probability of execution is likely to be different for the 

small traders and the large trader. This is simply because it is more difficult for a large 

order to find a match on the EB. Since the expected payoff on the EB is ( u c )δ− , and we 

expect l sδ δ< , then with u  the same, the large trader gets a smaller expected payoff 

value from trading on the EB than small traders. A corollary is that the transaction cost 

on the EB has to be lower to attract a large trader than to attract a small trader.  

2.b.2. Failure of crossing network in high volatility periods 

Another stylized fact about foreign exchange trading is that the dealer’s market 

seems to gain increasing popularity when exchange rate volatility is high. One striking 

result of the Federal Reserve Bank of New York survey on the impact of electronic 

broking in foreign exchange was the chief dealers’ belief that “maintaining a viable 

interbank direct dealing market was prudent to ensure sufficient liquidity to handle large 

trades during periods of stress” (Federal Reserve Bank of New York, 1997, p. 6). The 

survey indicated that electronic broking systems were much less satisfactory for trading 

during periods of high volatility. In some extreme situations the crossing network may 

fail to attract a sufficient number of traders, so that it “dries up” in times of great 

uncertainty associated with high volatility. Price volatility might affect several variables 

in our model, such as the discount factor and transaction costs at both markets, thus 

changing the traders’ behavior at the equilibrium. Since a long historical database of 
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electronic brokerage activity is unavailable at this time, volatility effects are beyond the 

scope of this paper.  However, as longer data sets, encompassing high volatility events, 

become available we hope to be able to address this issue.   

Since it takes time for orders on the crossing network to be executed, there is a 

potential loss caused by price movement during the duration that an order sits without a 

match.  This potential loss is due to an unfavorable exchange rate movement between the 

time an order is entered and the time the order is filled if the agent is unable to cancel the 

order before execution. This is a winner’s curse, where a limit order is “picked-off” at a 

now-stale price in a fast-changing market. In times of high volatility, there is a higher  

probability of such a winner’s curse. The theoretical model presented above has traders  

accounting for the delay on the crossing network by discounting the value of trading by a 

factor δ.  

 

 



 11

3.  EMPIRICAL ANALYSIS 

 
 The theoretical model introduced in the previous section is used to motivate the 

empirical work that follows.  In particular, the model generates testable hypotheses 

regarding the duration time of submitted orders on the crossing network and the 

probability of execution.  We first describe the data set used for analysis and then turn to 

a description of the econometric methods employed before presenting estimation results. 

3.a.  Data Description 

The data analyzed are Reuters D2000-2 electronic brokerage data on the Mark/Dollar 

exchange rate. The data set covers one week: October 6-10, 1997, and contains 

information on 130,535 orders. The data include both limit orders and market orders. The 

following information about an order is available: type of order (market or limit); order 

date, entry and exit time; order removal codes for filled and cancelled orders; price; 

quantity ordered; and quantity dealt. 

Reuters D2000-2 operates as an electronic limit order book with liquidity supply via 

limit order and liquidity demand via market order. Our data contain information not 

available to market participants since we can observe unexecuted orders submitted to the 

system. Participants just see the inside spread quotes but not the limit order book. Table1 

provides some descriptive statistics for the original data.   Table 1.a shows that the 

average price of an order was 1.75144 marks per dollar and the average order size was 

2.283058 million dollars.  The average quantity dealt was 0.883633 million, reflecting the 

fact that many orders are not filled and are withdrawn with no matching counterparty or 

are only partially filled.  This is emphasized by noting that the median quantity submitted 

was 2 million and the median quantity dealt was zero.  Tables 1.d and 1.e provide 
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additional information in that 63,517 orders were successful in finding a counterparty and 

67,018 were withdrawn before a match was found.  In the empirical work below, we will 

document the role of competitive quotes in determining the probability of finding a 

match.  If an agent submits a quote that is away from the current market price, that quote 

likely goes unfilled.  Tables 1.b and 1.c show that there were 21,783 market orders, 

where orders are submitted for immediate execution at the best available price, and 

108,752 limit orders, where quantity is accompanied by a reservation price which must 

be met for the order to be filled. 

3.b.  Duration Time of Orders 
 
3.b.1. Definition and Construction  
 

In order to examine the liquidity of the electronic network and the efficiency of its 

operation, we construct a variable (Duration), which measures the time from the entry of 

an order until its removal. Since Duration is computed as the time difference between the 

entry time and the removal time of an order, it provides a direct measure of the delay in a 

transaction on the electronic crossing network.  

Table 2 provides descriptive statistics on Duration.  We break down the sample 

into different categories, for example, limit orders, market orders, cancelled orders, and 

the sample of limit orders used for estimation.  Comparing all limit orders to all market 

orders, the noteworthy difference is the speed with which market orders are executed.  

The average limit order duration is 2.855 minutes while the average market order 

duration is 0.0012 minutes.  Since market orders are executed at the best available price, 

they are essentially executed immediately.  However limit orders may sit in the order 

book for prolonged times and may be cancelled at any time.  Note that the mean duration 
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for cancelled orders is 3.5742 minutes.  Some orders are cancelled in seconds after 

submission while others sit in the order book for hours before cancellation.  

Since our theoretical model focuses on duration of successful limit orders, we 

construct a data set of completely filled limit orders.  As will be discussed below, there is 

a pronounced intradaily pattern of activity in the Reuters EB.  As a result, we focus on 

the active period of 8:00 to 17:00 London time. The data are then filtered to identify any 

extreme observations that would be unrepresentative of the market and would bias the 

analysis.  We deleted any observations with a duration exceeding 80 minutes (61 

observations).  This leaves a sample of 29,740 orders with a mean duration of 1.2631 

minutes.  This is the data set used for estimation. 

3.b.2. Time of Day Effect 
 

As with all financial markets, we expect an intradaily pattern of duration time as 

markets tend to be deeper at certain times of day than at others.  To illustrate the 

intradaily pattern, we average duration of the offers submitted to the network for each 

hour of the trading day over the five days in our sample.  Table 3 reports the 24 average 

duration times and the number of orders submitted for each hour of the day. Traders have 

to wait longer on the network when the trading activity is low, as during hours 21-0 

GMT, when North American trading has stopped and major Asian trading has not yet 

begun.  Note the very low level of orders submitted during this time and the relatively 

long durations.  Table 3 also shows the importance of the Reuters network for 

mark/dollar trading which is dominated by European and U.S. trading.  The market is 

seen to be relatively thin during Asian trading hours.  This reflects the fact that, while 

Hong Kong and Singapore both were active market-making centers for the mark (and 
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now the euro), the rival electronic brokerage system offered by EBS is more popular for 

Asian trading.  In addition, Tokyo trading is dominated by yen/dollar relative to any other 

currency pair.5 In contrast to the thin market during Asian trading hours, note the depth of 

the market and associated short duration time during the peak European trading times 

from 8:00-17:00 GMT.   

3.b.3. Autoregressive structure of duration time 
 

The data suggest that there is a clustering of duration over time.  This will surely 

be affected by the regular intradaily patterns, as well as any idiosyncratic patterns that 

emerge due to shocks.  Long duration time tends to be followed by long duration and 

short duration followed by short duration time. The duration time of an order submitted 

to the network depends on the willingness of all other traders in the market to participate 

by contributing orders. As in the theoretical model presented earlier, if the market was 

liquid and the waiting time was short last period, people would be more likely to go to the 

crossing network this period, given their expectation conditional on past performance of 

the EB.   

To document the presence of  “clustering” in the duration data, we compute the 

average duration time of orders submitted within every 15-minute interval. A sample of 

459 observations is constructed from 5 trading days. Autocorrelation coefficients are 

computed and the results are reported in Table 4.   The statistics suggest that the duration 

time is highly autocorrelated with large and statistically significant coefficients even up 

to the fifth order.  

3.c.  Estimation of Duration Models 

                                                 
5 A discussion of Asian trading practices in foreign exchange is provided in Ito, Lyons, and Melvin (1998) 
and Covrig and Melvin (2002). 
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The theoretical model of section 2 suggests testable hypotheses regarding duration 

and the probability of execution on the EB.  We examine the empirical evidence 

regarding the following three hypotheses: size effect, price impact, and liquidity effect.  

We will discuss each of these hypotheses in turn before examining the evidence. 

Hypothesis 1: Size effect 

A stylized fact of the foreign exchange market is that large traders are more likely to 

trade with dealers than go to the crossing network. The intuitive explanation is that, in 

general, large orders have to wait longer on the network, which makes electronic trading 

riskier and less attractive. However, if the Burr distribution is a good representation of the 

foreign exchange market as Grammig and Maurer (2000) found for the stock market, then 

there may be a non-monotonic relationship between duration and the value of the hazard 

function.  As discussed in section 2.a.3, the hazard function may be increasing in duration 

for small durations and decreasing in duration for large durations, so that one cannot be 

sure that large orders have a smaller hazard value than small orders. The evidence 

presented here will allow the data to speak to this issue. We examine the relationship 

between durations and order size by incorporating an exogenous variable SIZE in our 

estimations below. 

Hypothesis 2: Price Impact 

Submission price of a limit order should affect the waiting time of the order on the 

crossing network. In general, we expect that an order with a competitive submission 

price, for example, a relatively high-priced buy order, or a relatively low-priced sell 

order, should get filled more quickly than other orders where price is farther away from 

the current transaction price of orders recently filled.  This effect is explored by including 
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in our estimation dummy variables for price competitiveness: DummyBP, switches to one 

for buy orders with a higher limit order price than the last transaction price; DummyBN, 

switches to one for buy orders with a submitted price lower than the last transaction 

price; DummySP, switches to one for sell orders with a submitted price higher than the 

last transaction price; and DummySN, switches to one for sell orders with a submitted 

price lower than the last transaction price. Competitive (uncompetitive) quotes with 

expected negative (positive) effects on duration are captured by DummyBP and 

DummySN (DummyBN and DummySP). 

Hypothesis 3: Liquidity Effect 

Duration should be negatively correlated with the total liquidity or depth of the market.  

The crossing network is characterized by a positive externality: An increase in the 

network’s submitted order volume increases its liquidity, benefiting all trades. The 

duration should be smaller when the depth is large. There is a potential offsetting 

crowding effect of a negative externality associated with a large number of orders. As 

Hendershott & Mendelson (1999) point out, low value orders can compete with higher 

value orders on the same side of the market and there may be a greater chance of smaller 

orders being squeezed out of the queue. However the crowding effect can only dominate 

the liquidity effect after the crossing network becomes sufficiently liquid.  We will 

explore the effect of liquidity by incorporating a variable DEPTH, which measures the 

total quantity offered for purchase or sale on all active submitted orders  

3.c.1. Econometric Methodology: the ACD Model 

Since we are studying orders submitted in irregular time intervals, the standard 

econometric techniques based on fixed time interval are not appropriate analytical tools. 
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If a short interval is chosen, there will be many intervals with no new information and 

heteroskedasticity will be introduced. On the other hand, the microstructure of the data 

will be lost if a long time interval is picked.  Engel and Russell (1998) developed an 

autoregressive conditional duration (ACD) model to describe the point process of order 

arrival rates that is a natural approach to estimating the relationships of concern here.   

 The ACD model belongs to the family of self-exciting marked point processes of 

Cox and Lewis (1966). A point process is described as self-exciting when the past 

evolution impacts the probability of future events. Basically, the economic motivation 

behind the ACD and the ARCH model follows a similar logic: due to a clustering of 

news, financial market events occur in clusters. This implies that the waiting time 

between these events exhibits significant serial correlation. 

Engel and Russell (1998) proposed the standard exponential ACD (EACD) model 

by specifying the observed duration ix  as a mixing process iiix εψ= . iψ  is the 

conditional duration defined as iψ = )1x,...,1ix|ix(E −  and iε  is an IID error sequence. 

For the EACD model, the density of error iε  is assumed to be exponential. 

A conditional density gives the forecast density for the next observation of order 

arrival conditional on all available past information (all past duration times). Given the 

current information set, the conditional hazard function measures the rate at which 

durations are completed after duration t, given that they last at least until t. Then for an 

EACD model, the Conditional Density of ix is )exp(
1

),...,|( 11
i

i

i
ii

x
xxxf

ψψ
−=−  and the 

conditional hazard is 
i

ii xxxh
ψ
1

),...,|( 11 =− .  In an ACD model, the conditional 

expectation is a linear function of the previous duration and conditional expectation. A 
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simple EACD (1,1) is specified as 11 −− ++= iii x βψαωψ .  This equation has coefficient 

constraints 0ω > , 0β ≥ , 0α ≥ , and 1α β+ < .  The first three constraints ensure the 

positivity of the conditional durations and the last ensures the existence of the 

unconditional mean of the durations.  As will be discussed below, when additional 

explanatory variables are added to the model, the non-negativity constraints may be 

overly restrictive.  For this reason, we will specify and estimate a log-ACD model below.  

First we will discuss implications of the particular distributional assumption made for the 

error term. 

For EACD models, the hazard functions conditional on past duration are restricted 

to be a constant. The Weibull distribution is more flexible in that it nests the exponential 

and allows a non-flat hazard function γγ 1
11 ),...,|( −

− = iii xxxxh  However, the hazard 

function is monotone: increasing if γ  >1, decreasing if γ  <1. As Grammig and Maurer 

(2000) point out, it would be reasonable for the hazard function of financial durations to 

be increasing for small durations and decreasing for long durations.6 The misspecification 

of the conditional hazard function can severely impact the estimation results. They 

proposed to use the Burr-distribution, which allows a hump shaped hazard and nests the 

Weibull distribution as a particular case.  The Burr-distribution may be described by first 

defining 
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6 We acknowledge the generosity of Joachim Grammig in sharing his suite of ACD GAUSS programs, 
which greatly shortened the time spent in programming for the current study. 
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);,...,|( . For 02 →σ , the Burr-ACD reduces to 

the Weibull-ACD and if in addition 1=κ , it becomes the exponential-ACD.  Since the 

Burr-ACD nests the Weibull and exponential specifications, by estimating the Burr 

model, we can test which specification is supported by the results. 

Figure 1 illustrates the shape of the hazard function for some alternative 

parameters. The monotonic function is parameterized as the Weibull with 0.5κ =  and 

2 0σ = .  The hump-shaped hazard is a Burr with 2κ =  and 2 0.5σ = .  In general, for 

1κ > the Burr hazard has the hump-shape.  Such hazard functions have the hazard 

increasing in small durations and decreasing in large durations.  Given the possibility of 

such a hazard for trade on the crossing network, it is not possible to state, a priori, that 

large orders will have a smaller hazard than small orders.  So even if large and small 

traders face the same hazard functions, the incidence of expected trades for large orders 

in the next time period could, theoretically, be smaller or larger than that for small orders.  

Our empirical work below will yield evidence on this issue.   

 As mentioned above, in order to test hypotheses suggested by our theoretical 

model, we want to include variables such as order size, price competitiveness, and market 

depth as explanatory variables in the conditional duration equation .  When additional 

variables with negative coefficients are added linearly to the right-hand side of the 

equation, conditional duration iψ  may become negative which is not admissible. If 

working with a standard ACD specification, we would have to impose non-negativity 
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constraints on the coefficients of the variables so that the right-hand side of the ACD 

equation remains strictly positive. Since non-negativity constraints on the coefficients 

may be very restrictive, we work instead with a more flexible functional form provided 

by the log-ACD model as discussed by Bauwens and Giot (2000). 

In a log-ACD model, duration ix  is defined as the mixing process iiix εψ )exp(= , 

such that iψ  is the logarithm of the conditional duration. iε  is the same random variable 

as in the ACD model and we specify it as having a Burr distribution.  The specification of 

the basic Log-ACD (1,1) model is:  ln(x )i i 1 i 1ψ ω α βψ= + +− − .  With this 

specification, the only coefficient restriction is that 1α β+ <  for covariance stationarity 

of ln(x )i .  Estimation proceeds via maximum likelihood. 

3.C.2.  Estimation Results 

Estimation is based on limit orders.  The issue of duration for market orders is 

irrelevant since market orders get executed almost immediately after they are posted on 

the electronic crossing network. As shown in Table 2, the mean duration for market 

orders is 0.0012 minutes, which is very small compared to the mean for filled limit orders 

of 1.7886 minutes. We only include completely filled limit orders since partially filled 

orders may give us inaccurate information on duration time.7  For instance, suppose an 

order is submitted for $5 million and a counterparty takes $1 million of the order in 10 

seconds.  We do not want to treat this partially filled trade the same as a trade that clears 

the complete amount a trader offered.  Finally, to avoid the problem of spurious results 

                                                 
7 While it might appear that there is an issue of censoring here, since we are only interested in modeling 
completely filled orders it is not true.  Only if our interest was in characterizing the duration process of all 
orders would we face a censoring issue by omitting partial fills. 
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driven by thin trading periods, we estimate using data over the period of peak European  

business hours (8:00am—5:00pm GMT).8  

 As stated above, we seek to estimate ACD models which incorporate the 

following variables: SIZE (the quantity submitted in millions of dollars), dummy 

variables for competitiveness of submitted order (submission price – last transaction 

price), and DEPTH (total depth of the order book in millions of dollars). 

Before proceeding to the results, some discussion of the price competitiveness dummies 

is in order.  To determine the competitiveness of the submission price, we identify the 

transaction price of the last trade before each order is submitted and take the difference 

between the submission price and the last-trade transaction price. To avoid the bid-ask 

bounce, the trade must be of the same type as the submitted order. So for a buy limit 

order, the last transaction for a buy-order is found and the price difference between the 

submission price and the transaction price is computed. If the submission price is higher 

than the transaction price, we consider it a competitive order and expect it to get filled 

more quickly. By the same token, for a sell order, the submission price of a competitive 

order would be lower than the transaction price of the last filled sell-order. We 

constructed 4 dummy variables in order to capture the impact of price competitiveness on 

duration time:  Define variable Pricediff = submission price –last transaction price, then 

DummyBP = 1 for buy orders with Pricediff>0; 0 otherwise 

DummyBN = 1 for buy orders with Pricediff<0; 0 otherwise  

DummySP = 1 for sell orders with Pricediff>0; 0 otherwise  

DummySN = 1 for sell orders with Pricediff<0; 0 otherwise 

                                                 
8 No “overnight” durations are utilized.  We start each day with the duration from the first order after 8:00 
GMT as our first available lag for that day. 
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The functional form of the Burr- log-ACD (1,1) model estimated is: 

ln(x ) SIZE DummyBP DummyBN DummySPi i 1 i 1 1 i 2 i 3 i 3 i
DummySN DEPTH4 i 5 i

ψ ω α βψ δ δ δ δ
δ δ

= + + + + + + +− −
+

 

where i indexes submitted orders and orders are arranged in calendar (clock) time. Note 

that there is no collinearity problem associated with including the four dummies for price 

competitiveness of quotes since about 30 percent of submitted orders have quotes equal 

to the last transaction price. 

Unconstrained estimation resulted in ß<0, but in the log-ACD specification this is 

no problem.  Estimates of the unrestricted model are reported in Table 5a.  Restricting 

0=β  had no effect on any hypothesis tests of interest. These estimation results are 

reported in Table 5b. 

As expected, we get a positive significant coefficient for SIZE. This suggests that the 

bigger the order, the longer the duration time. In the theory presentation of section 2, the 

effect of SIZE was uncertain due to the possibility of a hump-shaped hazard function.  

However, the empirical results indicate that size of trade is a reason to expect big traders 

to prefer the dealer market over the crossing network.  The estimated parameters of  

0.6544κ =  and 2 0.5135σ =  suggest that the appropriate hazard function for the 

electronic foreign exchange brokerage will have a shape like that portrayed in Figure 2.  

For these data, the hazard is monotonically decreasing in duration.  The empirical results 

suggest no ambiguity in the effect of SIZE on the value of the hazard function.  

DEPTH has a negative and statistically significant coefficient. The greater the 

quantity of outstanding orders, the shorter the duration time. With regard to our price 

impact variables, results for the four dummies are also consistent with our priors. The 
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negative coefficients of DummyBP and DummySN indicate that it takes less time to find a 

match for a limit order with a competitive price (a better price than the last transaction 

price). On the other hand, for buy orders with low prices and sell orders with high prices 

(relative to last transactions), the results suggest longer durations as indicated by the 

positive and significant coefficients estimated for DummyBN and DummySP.  Without 

conditioning the estimation results on price competitiveness of quotes, one cannot 

properly infer the effects of other variables, like SIZE and DEPTH.  Our results may be 

summarized as follows: given the price competitiveness of submitted orders, the larger 

the order size the longer the duration on the crossing network, and the greater the depth 

or liquidity of the market, the shorter the duration time. 

With regard to the proper functional form of ACD model, as mentioned above, 

the Burr model nests the Weibull and exponential.  Referring back to the specification of 

the Burr ACD in Section 3.c.1, we can test whether the Weibull ACD is supported by a 

test of 02 →σ .  The results reported in Table 5 clearly reject the hypothesis that 

2 0σ = .  Since we reject the Weibull in favor of the Burr specification, it is clear that the 

exponential is not supported (but we would also reject the additional restriction 

associated with the exponential, that is ? = 1).  
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4.  SUMMARY  

 

 We begin by specifying a theoretical model of foreign exchange market 

participants facing a choice of trading directly with dealers or submitting orders to an 

electronic brokerage or crossing network.  The equilibrium of the model suggests that 

under normal conditions, we would expect large traders to prefer the dealer market where 

certainty of quick execution is provided.  A large order may be expected to have a longer 

duration on the crossing network in order to find a match. Smaller traders would prefer 

the crossing network due to lower transaction costs along with the greater likelihood of 

finding a match for a small order.  The longer the expected duration of a submitted order, 

the lower the expected value from trading.  This result is driven by the potential cost of 

having the market price move unfavorably and a limit order filled at an undesirable price 

before an order can be withdrawn.   

 The empirical analysis focuses on estimating duration models of limit orders 

submitted to the Reuters D-2000-2 electronic brokerage system.  We model the time from 

order submission to order fill (Duration) in an autoregressive conditional duration (ACD) 

framework where in addition to lagged conditional and unconditional duration, we 

include the size of the order (SIZE), the liquidity or depth of the market (DEPTH), and 

price competitiveness of the quote (PRICEDIF).  The latter variable is measured by the 

difference between the price of the submitted order and the last transaction price on the 

same side of the market (buy or sell).  It is important to condition the duration results on 

price competitiveness of quotes in order to make sensible inferences on other variables, 

like size of order submitted.  We find that price competitiveness has the effects expected: 
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uncompetitive quotes, as measured by relatively low buy prices or relatively high sell 

prices, are associated with longer durations while competitive quotes, as measured by 

relatively high buy prices or low sell prices are associated with shorter durations.  Given 

these effects of price competitiveness, we find that the larger the size of order submitted, 

the longer the duration. With a Burr distribution for conditional duration, it is possible to 

have the hazard function increasing in duration for small durations and rising in duration 

for larger durations.  In this case, we cannot say that large orders will have a lower value 

of the hazard function than small orders.  However, the evidence suggests a hazard 

function that is monotonically decreasing in duration.  So the longer duration, the lower 

the value of the hazard function and, in terms of the theory presented, the lower the value 

of order submission on the electronic brokerage. The empirical results support the 

theoretical model where big traders will prefer the dealer market over the crossing 

network due to the longer waiting time for big orders to find a match on the electronic 

brokerage. We also find that the greater the depth of the market, the shorter the duration. 

This is the result expected as greater depth should increase the probability of finding a 

match for any submitted order. 

 This first look at theory and empirics on the choice of trading venue for foreign 

exchange pays due respect to the stylized facts of the market.  The growth of electronic 

broking is the number one institutional FX development of the last decade and has 

revolutionized the way in which currencies are traded.  The popularity of this innovation 

in trading protocol is associated with lower cost of transacting and the ability of smaller 

traders to compete on an equal footing with the big players in the market via anonymous 

order submission.  In the future, if longer data sets become available, it will be ins tructive 
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to analyze how trading migrates between the electronic broking network and the direct 

dealing network during times of stress.  The theoretical model developed here can be 

extended by including a role for volatility to increase the probability of a “winner’s 

curse” for submitted limit orders in times of great volatility.  In such times of great price 

uncertainty, a limit order may be “picked off” and executed at an unfavorable price 

relative to the fast-moving current market values.  As a result, we expect the electronic 

brokerage network to dry up during times of high volatility as even small traders migrate 

to the direct dealing market where immediate execution is offered. Analysis of such 

volatility effects awaits the availability of new and longer data sets. 
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Table 1 

DESCRIPTIVE STATISTICS OF ELECTRONIC BROKERAGE DATA 

The tables provide summary data from the Reuters D-2002 electronic brokerage system for the week of 
October 6-10, 1997.  Price is marks per dollar and quantity is millions of dollars.  
 
 
a. All submitted orders 
 

 Price Quantity Quantity Dealt 
Number of orders 130535 130535 130535 
Mean  1.75144 2.283058 0.883633 
Median 1.755 2 0 
Std Deviation 0.0163 3.58977 1.33644 
Skewness -85.55836 165.25713 3.224573 
Kurtosis 9189.8112 45537.8361 22.7082 
 

b.  Market orders 

 Price Quantity Quantity Dealt 
Number of orders 21783 21783 21783 
Mean  1.75145 3.236285 1.82132856 
Median 1.753 2 1 
Std Deviation 0.00728 3.6032 1.35002 
Skewness -0.4863 3.15407 3.0855 
Kurtosis -0.79639 11.98166 17.6065 
 

c.  Limit orders 

 Price Quantity Quantity Dealt 
Number of orders 108752 108752 108752 
Mean  1.75144 2.09213 0.6958 
Median 1.753 1 0 
Std Deviation 0.001756 3.55651 1.2519 
Skewness -82.159 203.3116 3.7792 
Kurtosis 8192.8236 56773.65 30.4539 
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Table 1 (cont.) 

 

 

d.  Orders with quantity dealt greater than 0 (successful orders) 

 Price Quantity Quantity Dealt 
Number of orders 63517 63517 63517 
Mean  1.751419 2.468457 1.815971 
Median 1.753 2 1 
Std Deviation 0.00731 2.63731 1.40623 
Skewness -0.4797 4.02832 3.66975 
Kurtosis -0.81644 23.2899 27.3741 
 
 
 
e. Orders with 0 quantity dealt (withdrawn orders)  
 

 Price Quantity Quantity Dealt 
Number of orders 67018 67018 67018 
Mean  1.751467 2.107344 0 
Median 1.753 2 0 
Std Deviation 0.02161 4.29469 0 
Skewness -71.5303 187.17077 0 
Kurtosis 5769.4977 43324.7019 0 
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Table 2 
 

Descriptive Statistics for Duration 
 

Duration is the time passing from the entry of an order until its removal.  Order removal may be due to an 
order being filled or else cancelled.  The units of measurement are in minutes.  The sample used for 
estimation includes only filled limit orders. 
 
 
 
 
 
 All Limit Orders All Market Orders All Cancelled  

Orders 
Estimation

Sample  
Number of 
Orders 

108683 21783 66517 29740 

Mean (min) 2.855 0.0012 3.5742 1.2631 
Std Deviation 16.334 0.0008 18.742 4.90 
Range 802.67 0.0503 690.182 79.603 
Skewness 15.956 14.269 13.374 8.169 
Kurtosis 373.711 689.002 252.610 82.1344 
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Table 3 

 
Intradaily Pattern of Duration 

 
Duration is the time in minutes between the submission of an order and its removal from the Reuters 
electronic brokerage system.  Time is measured as GMT (London time) so that 0 GMT is 9:00 in Tokyo 
and 19:00 in New York. The table shows a strong intradaily pattern where duration and number of orders is 
inversely related. 
 
 
 
 
Time of Day Average Duration Number of Orders Percentage 

0 10.2146 477  0.37%  
1 6.7147 692 0.53% 
2 10.8359 317 0.24% 
3 35.8062 64 0.05% 
4 9.0134 200 0.15% 
5 5.5536 891 0.68% 
6 2.6893 5595 4.29% 
7 2.3079 14491 11.10% 
8 2.3178 15097 11.57% 
9 3.0254 9696 7.43% 
10 3.2417 7360 5.64% 
11 2.1809 13006 9.96% 
12 1.5406 16790 12.86% 
13 1.4885 18976 14.54% 
14 1.5596 14518 11.12% 
15 2.391 6416 4.92% 
16 4.7557 2139 1.64% 
17 4.8778 1570 1.20% 
18 3.1406 1510 1.16% 
19 4.6772 446 0.34% 
20 6.0416 143 0.11% 
21 36.8439 43 0.03% 
22 43.329 29 0.02% 
23 44.7129 69 0.05% 
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Table 4 
 

Autocorrelations of Average Duration Time  
 
Duration times from order submission to order removal were averaged over 15 minute intervals over the 
24-hour day.  Autocorrelation coefficients were then estimated over this data set. The autocorrelation 
coefficients and associated standard errors reported below confirm the presence of duration clustering 
through time where periods of relatively long durations exist and then are followed by periods of relatively 
short durations. 
 
  Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1      Std Error 
 
    0      1636.742        1.00000   |                    |********************|             0 
    1       519.214        0.31722    |                  . |******                            |       0.046676 
    2       353.370        0.21590    |                  . |****                                |      0.051158 
    3       159.369        0.09737    |                  . |**                                    |      0.053106 
    4       282.972        0.17289    |                  . |***                                  |      0.053493 
    5       256.431        0.15667    |                  . |***                                  |      0.054697 
    6     63.954672      0.03907    |                  . |*.                                     |      0.055666 
    7       102.902        0.06287    |                  . |*.                                     |      0.055726 
    8     78.666688      0.04806    |                  . |*.                                     |      0.055880 
    9     39.260038      0.02399    |                  . | .                                      |      0.055970 
   10      6.685793      0.00408    |                  . | .                                      |      0.055993 
   11    -11.446203     -.00699    |                  . | .                                      |      0.055993 
   12      9.795678      0.00598    |                  . | .                                      |      0.055995 
   13      9.432072      0.00576    |                  . | .                                      |      0.055997 
   14     69.653841     0.04256    |                  . |*.                                     |      0.055998 
   15     35.423853     0.02164    |                  . | .                                      |      0.056068 
   16     18.549567     0.01133    |                  . | .                                      |      0.056087 
   17       130.523       0.07975    |                  . |**                                    |      0.056092 
   18     66.945660     0.04090    |                  . |*.                                     |      0.056338 
   19     72.659411     0.04439    |                  . |*.                                     |      0.056403 
   20      0.755464      0.00046    |                  . | .                                      |      0.056479 
   21     10.467460     0.00640    |                  . | .                                      |      0.056479 
   22     -7.547603      -.00461    |                  . | .                                      |      0.056480 
   23    -41.758172     -.02551    |                  .*| .                                     |      0.056481 
   24    -36.516871     -.02231    |                  . | .                                      |      0.056506 
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Table 5 
 

ACD Models of Duration: Estimates 
 
Maximum likelihood estimates of Burr-log-ACD models of duration from time orders submitted until time 
orders are withdrawn are presented below. 
 
a.  Unrestricted Model 
 
 Coefficient Std. Error T-Stat Prob 
ω 0.0459 0.1101 0.417 0.6768 
ln( 1−ix ) 0.1524 0.0054 28.283 0.0000 

1−iψ  -0.1168 0.0105 -11.099 0.0000 

SIZE 0.0838 0.0089 9.394 0.0000 
DummyBPi -1.1345 0.0398 -28.539 0.0000 
DummyBNi 2.0074 0.0373 53.876 0.0000 
DummySPi 1.9777 0.0373 53.025 0.0000 
DummySNi -1.1454 0.0396 -28.947 0.0000 
DEPTH -0.0027 0.0004 -6.685 0.0000 
κ  0.6544 0.0068 95.869 0.0000 

2σ  0.5135 0.0189 27.219 0.0000 
 
Mean log- likelihood: 0.124391 
 
 
b.  Restricted Model (ß=0) 
 
 Coefficient Std. Error T-Stat Prob 
ω -0.0358 0.0994 -0.361 0.7184 
ln( 1−ix ) 0.1289 0.0046 27.732 0.0000 

SIZE 0.0763 0.0090 8.519 0.0000 
DummyBPi -1.1093 0.0399 -27.809 0.0000 
DummyBNi 1.9801 0.0372 53.182 0.0000 
DummySPi 1.9535 0.0373 52.434 0.0000 
DummySNi -1.1306 0.0397 -28.466 0.0000 
DEPTH -0.0025 0.0004 -6.519 0.0000 
κ  0.6514 0.0069 95.050 0.0000 

2σ  0.5088 0.0190 26.748 0.0000 
 
Mean log- likelihood: 0.122331 
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Figure 1:  Representative Hazard Functions  
 
The figure illustrates two alternative hazard functions derived from the general Burr 
distribution.  The monotonically-decreasing function is parameterized to illustrate the 

Weibull hazard, which is nested in the Burr distribution, with 0.5κ =  and 2 0σ = .  The 
humped-shaped hazard occurs for Burr distributions with 1κ > . The figure depicts a 

Burr with 2κ =  and 2 0.5σ = .  Note that, depending on the parameters, the Burr hazard 
may be increasing in duration for small durations and decreasing in duration for larger 
durations.   
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Figure 2: Shape of Estimated Hazard Function 
 
The figure illustrates a hazard function with parameters equal to those estimated for the 
foreign exchange electronic brokerage data.  The conditional hazard function is generated 

by a Burr distribution with 0.6544κ =  and 2 0.5135σ = .  Note that the hazard function 
is monotonically decreasing in duration,  so that the longer the duration, the smaller the 
value of the hazard function.  If large orders are associated with longer duration, then the 
associated value of the hazard function should be lower for large orders than small 
orders. 
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