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Abstract

Empirical evidence shows that macroeconomic fundamentals have little explana-

tory power for nominal exchange rates. On the other hand, the recent “microstruc-

ture approach to exchange rates” has shown that most exchange rate volatility at

short to medium horizons is related to order flows. This suggests that investor het-

erogeneity might be key to understanding exchange rate dynamics, in contrast to

the common representative agent approach in macroeconomic models of exchange

rate determination. To explore this issue, we introduce investor heterogeneity into

an otherwise standard monetary model of exchange rate determination. There

are two types of heterogeneity: dispersed information about fundamentals and

non-fundamentals based heterogeneity (e.g., liquidity traders). We show that in-

formation dispersion leads to magnification and endogenous persistence of the im-

pact of non-fundamentals trade on the exchange rate, both resulting from rational

confusion about the source of exchange rate fluctuations. Higher order expecta-

tions, familiar from Keynes’ “beauty contest”, partly contribute to these results.

The implications of the model are consistent with the evidence on the relation-

ship between exchange rates and fundamentals: (i) fundamentals play little role in

explaining exchange rate movements in the short to medium run, (ii) over longer

horizons the exchange rate is primarily driven by fundamentals, (iii) exchange rate

changes are a weak predictor of future fundamentals.



I Introduction

The enormous volume of trade in the foreign exchange market, $1.2 trillion per

day in 2001, reflects extensive heterogeneity among market participants. More-

over, recent evidence from the microstructure approach to exchange rates suggests

that investor heterogeneity is not a sideshow, but a critical driving force behind

exchange rate fluctuations. In particular, Evans and Lyons [2001] show that most

short-run exchange rate volatility is related to order flow, which in turn is asso-

ciated with investor heterogeneity.1 On the other hand, existing macroeconomic

models of exchange rate determination, in which there is no role for investor het-

erogeneity, have fared poorly. Meese and Rogoff [1983] found that a random walk

predicts exchange rates better than macroeconomic models. Their findings remain

valid today.2 Lyons [2001] refers to the weak explanatory power of macroeconomic

fundamentals as the “exchange rate determination puzzle” and characterizes ex-

change rate economics as in a state of crisis.3 A natural question is whether investor

heterogeneity can explain this puzzle.

The goal of this paper is to examine the impact of investor heterogeneity on

exchange rate behavior. In order to do so in a way that is most transparent,

we introduce investor heterogeneity into a standard monetary model of exchange

rate determination. We introduce two types of heterogeneity that have generally

been associated with order flow. The first type is heterogeneous information of

market participants about future macroeconomic fundamentals. We know from

extensive survey evidence that investors have different views about the macroeco-

nomic outlook.4 The second type is non-fundamentals based heterogeneity. This

includes noise traders, but more generally involves rational investors who trade

1See also Rime [2001] and Froot and Ramadorai [2002].
2More recently Cheung, Chinn, and Pascual [2002] consider a much wider range of models than

originally considered by Meese and Rogoff and find that none of them consistently outperforms

the random walk in predictive power. For a survey see Frankel and Rose [1995].
3The exchange rate determination puzzle is part of a broader set of exchange rate puzzles that

Obstfeld and Rogoff [2001] have called the exchange rate disconnect puzzle. This also includes

the lack of feedback from the exchange rate to the macro economy and the excess volatility of

exchange rates (relative to fundamentals).
4There is also evidence that exchange rate expectations differ substantially across investors.

See Chionis and MacDonald [2002], Ito [1990], Elliott and Ito [1999], and MacDonald and Marsh

[1996].
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for non-speculative reasons. Examples are liquidity traders, trades resulting from

hedging idiosyncratic endowment or preference shocks, or trades associated with

differential access to private investment opportunities.5 Some recent papers have

introduced the second type of heterogeneity into models of exchange rate determi-

nation, mostly in the form of noise traders, but they do not consider information

dispersion.6 We will show that it is the interaction of these two types of hetero-

geneity that helps in understanding the exchange rate determination puzzle.

Our model is in the tradition of the noisy rational expectations literature, in

which both types of heterogeneity are present.7 In that literature asset prices are an

important source of information for investors as they aggregate private information

of individual investors. Noise reduces the information content of asset prices, but

is necessary for a rational expectations equilibrium to exist.8 Most noisy rational

expectations models are static or two-period models. This makes them ill-suited

to address the disconnect between asset prices and fundamentals, which is much

stronger in the long-run than the short-run (e.g. Mark [1995] for exchange rates).

The problem with solving dynamic noisy rational expectations models with

heterogeneous information is what Townsend [1983] called “infinite regress”. As-

set prices depend on higher order expectations of fundamentals: expectations of

other investors’ expectations, expectations of expectations of other investors’ ex-

pectations, and so on. The dimension of these higher order expectations increases

with the horizon, leading to infinite regress for an infinite horizon model. This is

not a mere technical nuisance. Keynes [1936] compared investment decisions to a

beauty contest, where “... each competitor has to pick, not those faces which he

himself finds prettiest, but those which he thinks likeliest to catch the fancy of the

other competitors...”. In Keynes’ view the market is very much driven by opinions

of other investors’ opinions, and even higher order than that.

5See respectively Dow and Gorton [1995], Spiegel and Subrahmanyam [1992] and Wang [1994].
6Examples are Jeanne and Rose [2002], Devereux and Engel [2002], Kollman [2002], and Mark

and Wu [1998]. Hau and Rey [2002] introduce non-fundamentals based heterogeneity through

an exogenous foreign exchange supply function of banks.
7Three influential papers that jump-started this literature are Grossman and Stiglitz [1980],

Hellwig [1980] and Diamond and Verrecchia [1981]. For an overview, see Brunnermeier [2001].
8Without non-fundamentals noise the asset price fully reveals the aggregate information of

all investors, so that they have no incentive to collect private information or to use it once they

have collected it.
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There is a small literature that has studied dynamic noisy rational expectations

models. He and Wang [1995] assume that an asset has one payoff at a terminal

date. A continuous time version of that model has infinite regress, but an analytical

solution is nonetheless feasible. However, the one-time payoff structure is less appli-

cable to the foreign exchange market. Another approach is found in Wang [1993,

1994], who adopts a hierarchical information structure suggested by Townsend

[1983]. A set of agents is fully informed, while another set of agents is uninformed.

In that case higher order expectations collapse to first order expectations.9 Fi-

nally, Townsend [1983] develops a solution method for a model with symmetrically

dispersed information.10 Townsend studies a dynamic business cycle model rather

than an asset-pricing model. Subsequent contributions have been mostly techni-

cal, solving the same model as in Townsend [1983] with alternative methods.11

The only application to asset pricing we are aware of is Singleton [1987], who

applies Townsend’s method to a model for government bonds with a symmetric

information structure.12

In this paper we adopt Townsend’s symmetric information structure. This has

two advantages over a hierarchical information structure. First, it allows us to

focus on information dispersion itself rather than differences in the quality of in-

formation across investors. Second, when information is symmetrically dispersed,

9The expectation of a fundamental by an informed investor is the fundamental itself, so that

the expectation by an uninformed investor of the expectation of an informed investor is equal to

the first order expectation of the uninformed investor.
10The solution method described in Townsend [1983] applies to the model in section 8 of that

paper where the economy-wide average price is observed with noise. Townsend [1983] mistakenly

believed that higher order expectations are also relevant in a two-sector version of the model

where firms observe each other’s prices without noise. However, Pearlman and Sargent [2002]

show that the equilibrium fully reveals private information in that case.
11See Kasa [2000] and Sargent [1991]. Probably as a result of the technical difficulty in solving

these models, the macroeconomics literature has devoted relatively little attention to heteroge-

neous information in the last two decades. This contrasts with the 1970s where, following Lucas

[1972], there had been active research on rational expectations and heterogeneous information

(e.g., see King, 1982). Recently, information issues in the context of price rigidity have again

been brought to the forefront in contributions by Woodford [2001] and Mankiw and Reis [2002].
12In Singleton’s model there is no information dispersion about the payoff structure on the

assets (in this case coupons on government bonds), but there is private information about whether

non-fundamentals based trade (the noise) is transitory or persistent. The uncertainty is resolved

after two periods.
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higher order expectations play an important role. In solving the model we adopt

two alternative approaches. The first is Townsend’s solution method. This gives

an exact solution, but it can only be applied to asset pricing models with over-

lapping two-period lived investors (as in Singleton [1987]). The second approach

is a close numerical approximation that we develop for the solution of the model

with infinitely lived agents. This leads to almost identical results as applying the

Townsend method to the case of two-period lived investors.

Introducing information heterogeneity helps in understanding the exchange rate

determination puzzle along three dimensions. First, we show that a small amount

of non-fundamentals based trade can become the dominant source of exchange rate

volatility when information is heterogeneous, while it has practically no effect on

the exchange rate when investors have common information. The reason is that

under heterogeneous information the exchange rate itself becomes an important

source of information about future fundamentals. The impact of non-fundamentals

trade on the exchange rate can then be significantly amplified as agents rationally

misinterpret the resulting exchange rate movements as information about future

fundamentals.13 Moreover, as Allen, Morris and Shin [2003] have shown, asset

prices are more sensitive to public information when they depend on higher or-

der expectations. In this paper we show that higher order expectations give more

weight to the exchange rate as a source of information, contributing to the mag-

nification of the impact of non-fundamentals trade on the exchange rate.

Second, the resulting rational confusion can be persistent, which generates

endogenous persistence of the impact of non-fundamentals based trade on the

exchange rate. Finally, consistent with empirical evidence (e.g., Mark [1995]),

the exchange rate is largely driven by fundamentals in the long run. As agents

gradually learn about future fundamentals, and even observe them as time goes

on, the rational confusion eventually dissipates.14

The remainder of the paper is organized as follows. Section II describes the

13In the context of static models, several authors, e.g., Gennotte and Leland [1990] and Romer

[1993], argued that such rational confusion played a critical role in amplifying non-informational

trade during the stock-market crash of October 19, 1987.
14Another recent paper on exchange rate dynamics where learning plays an important role is

Gourinchas and Tornell [2002]. In that paper, in which there is no investor heterogeneity, agents

learn about the nature of interest rate shocks (transitory or persistent), but there is an irrational

misperception about the second moments in interest rate forecasts that never goes away.
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model and solution method. Section III considers some special cases of the model

in order to develop intuition for our key results. Section IV presents the results

based on the general dynamic model and Section V concludes.

II A Monetary Model with Information Disper-

sion

II.A Infinite Regress

Our model contains the three basic building blocks of the standard monetary

model of exchange rate determination: (i) money market equilibrium, (ii) pur-

chasing power parity, and (iii) interest rate parity. We modify the standard

monetary model in two ways. First, we introduce non-fundamentals based trade,

which affects the risk-premium in the interest parity condition. We model non-

fundamentals trade in the form of noise traders, both because this is the easiest

way to do it and because it has become a relatively standard way to model non-

fundamentals trade in open economy macroeconomics. As emphasized in the intro-

duction though, non-fundamentals based trade can be modeled in many ways and

in general can be perfectly rational. We do not believe that our particular way of

modeling it here is critical to the results.15 Second, we assume that investors have

heterogeneous expectations about future fundamentals. Before describing the pre-

cise information structure, we first derive a general solution to the exchange rate

under heterogeneous information, in which the exchange rate depends on higher

order expectations of future fundamentals. This generalizes the standard equilib-

rium exchange rate equation that depends on (common) expectations of future

fundamentals.

There are two economies. They produce the same good, so that purchasing

power parity holds:

pt = p
∗
t + st (1)

Local currency prices are in logs and st is the log of the nominal exchange rate.
16

15For example, the model in Wang [1993] is very similar to that in Wang [1994]. In the former

the non-fundamentals trade is exogenous, while in the latter it is generated endogenously by

giving some investors access to private investment opportunities.
16This assumption is relaxed in section IV.C when we introduce price stickiness.

5



There is a continuum of investors in both countries on the interval [0,1]. We

assume that there are overlapping generations of agents that live for two periods

and make only one investment decision. This assumption significantly simplifies

the presentation, helps in providing intuition, and allows us to obtain an exact

solution to the model. However, it is not critical for the results and we discuss

below the case where agents have infinite horizons.

Investors in both economies can invest in four assets: domestic money, nominal

bonds of both countries with interest rates it and i
∗
t , and a technology with fixed

real return r that is in infinite supply. We assume that one economy is large

and the other infinitesimally small. Bond market equilibrium is therefore entirely

determined by investors in the large country, on which we will focus. We also

assume that money supply in the large country is constant, which in equilibrium

leads to a constant price level pt, so that we can focus on nominal returns and

it = r. Money supply in the small country is stochastic.

The wealth wit of investors born at time t is given by a fixed endowment. At

time t+1 these investors receive the return on their investments plus income from

time t+1 production. We assume that production depends on real money holdingsfmi
t through the function f(fmi

t) = k −fmi
t(ln(fmi

t)− 1)/α.17 Agent i maximizes
−Ete−γcit+1

subject to

cit+1 = (1 + it)w
i
t + (st+1 − st + i∗t − it)bit − itfmi

t + f(fmi
t)

where wit is real wealth at the start of period t, and b
i
t is invested in foreign bonds.

st+1 − st + i∗t − it is the log-linearized excess return on investing abroad.
Combining the first order condition for money holdings with money market

equilibrium in both countries we get

mt − pt = −αit (2)

m∗t − p∗t = −αi∗t (3)

where mt, and m
∗
t are the logs of domestic and foreign nominal money supply.

18

17By introducing money through production rather than utility we avoid making money de-

mand a function of consumption, which would complicate the solution.
18It is immediately clear that the equilibrium price level in the large country is constant since

it = r is constant and the money supply is constant.
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The demand for foreign bonds by investor i is:

bit =
Eit(st+1)− st + i∗t − it

γσ2t
(4)

where Eit(st+1) is the expectation of investor i.

We assume that a proportion n of investors have a noisy expected return. More

specifically, investors on the interval [0, 1−n] have rational expectations about the
excess return on foreign bonds, while investors on the interval [1 − n, 1] have an
error term χt added to the rational expectation. As is standard, we assume that

vart(st+1) = σ2t is rational for all traders. The net supply of foreign bonds resulting

from the expectational error is given by bt ≡ −nχt/γσ2t . We assume that bt follows
an AR(1) process:

bt = ρbbt−1 + εbt (5)

where εbt ∼ N(0,σ2b ). A critical assumption is that bt is not observable.19 Only the
process is known to all agents.

Since bonds are in zero net supply, aggregation of (4) yields the following

interest arbitrage condition:

Et(st+1)− st = it − i∗t + γbtσ
2
t (6)

where Et is the average rational expectation across all investors. For noise traders

it only includes the rational component of their expectation.

The model is summarized by (1), (2), (3), and (6). Other than the risk-premium

in the interest rate parity condition associated with non-fundamentals trade, these

equations are the standard building blocks of the monetary model of exchange rate

determination.

Defining the fundamental as ft = (mt − m∗t ), in Appendix A we derive the

following equilibrium exchange rate:

st =
1

1 + α

∞X
k=0

µ
α

1 + α

¶k
E
k
t

³
ft+k − αγσ2t+kbt+k

´
(7)

where E
0
t (xt) = xt, E

1
t (xt+1) = Et(xt+1) and higher order expectations are defined

as

E
k
t (xt+k) = EtEt+1...Et+k−1(xt+k). (8)

19This is even the case for the irrational agents. Otherwise they would know their own expec-

tational error.
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Thus, the exchange rate at time t depends on the fundamental at time t,

the average expectation of the fundamental at time t + 1, the average expec-

tation of the average expectation of the fundamental at t + 2, etc. The law

of iterated expectations does not apply to average expectations. For example,

EtEt+1(st+2) 6= Et(st+2).20 This is a basic feature of asset-pricing under heteroge-
neous expectations: the expectation of other investors’ expectations matters. In a

dynamic system, this leads to the infinite regress problem, as analyzed in Townsend

[1983]: as the horizon goes to infinity the dimensionality of the expectation term

goes to infinity.

II.B The Information Structure

We assume that investors receive a signal at time t about the fundamental at

t+ T . We will compare the results under common knowledge, where all investors

receive the same signal, to that under private (heterogeneous) information, where

investors receive different signals. We define the fundamental T periods from now

as

ut = ft+T

With common knowledge all investors receive the signal

vt = ut + εvt εvt ∼ N(0,σ2v,c) (9)

where εvt is independent of ut. Under heterogeneous information investor i receives

a signal

vit = ut + εvit εvit ∼ N(0,σ2v) (10)

where εvit is independent from ut and other agents’ signals. Due to the law of large

numbers, the average signal received by investors is ut, i.e.,
R 1
0 v

i
tdi = ut.

We assume that the fundamental’s process is always common knowledge to all

agents:

ut = ρ1ut−1 + ρ2ut−2 + εut εut ∼ N(0,σ2u) (11)

Since investors observe current and lagged values of the fundamental, knowing the

process provides information about the fundamental at future dates. The main

20This point is developed further below. See also Allen, Morris, and Shin [2002] for a discussion

in a simpler setting.
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results of the paper, reported in section IV, are based on the assumption that

ρ1 = 1 + ρ and ρ2 = −ρ, so that the fundamental follows an AR process in first
differences: ut−ut−1 = ρ(ut−1−ut−2)+εut . We will take up the much simpler case

where ρ1 = ρ2 = 0 in the next section.

II.C Solution Methods

The model only has an analytical solution for the special case where T = 1, which

is discussed in the next section. In that case higher order expectations are equal

to the average expectation and there is no infinite regress problem. This can

be understood as follows. When T = 1, investors do not use information from

previous periods to update their expectations since the new information at time t

is the fundamental ft (which is obviously superior to any previous private signals

about ft). Thus, at time t an investor should not expect his own expectation at

t + 1 to be different from that of others. Therefore the second order expectation

is equal to the average expectation. The same is the case for even higher order

expectations.

In the more general setup where T > 1, investors do use information from

previous periods to update their expectations. For example, private information

at time t affects time t + 1 expectations of future fundamentals. In that case

investors at time t expect their own expectation at t+ 1 to be different from that

of other investors, since they expect others to have received a different signal at

time t. The expectation of signals by other investors is the expectation of ut,

which is generally different from the investor’s own signal. When investors expect

their own expectation next period to differ from that of others, the second order

expectation is not equal to the average expectation. The same is the case for even

higher order expectations.

Townsend [1983] points out that the state space becomes infinite when there are

infinitely many higher order expectations. He proposes an exact solution method

when the number of unknown shocks is finite. Here we provide a brief description

of the application to our model, leaving details to Appendix D. One can write

down a Wold representation of the equilibrium exchange rate as

st = A(L)ε
u
t +B(L)ε

b
t (12)

where A(L) and B(L) are infinite order polynomials in the lag operator L. The
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errors εivt do not enter the exchange rate equation as they average to zero across

investors. Since at time t investors observe the fundamental ft, only the new

innovations εu between time t − T + 1 and time t are unknown. The same is
true for innovations to non-fundamentals trade. Exchange rates at time t−T and
earlier, together with knowledge of εu at time t− T and earlier, reveal the shocks
εb at time t− T and earlier.
Investors can then solve a signal extraction problem for the finite number of

unknown innovations. Both private signals and exchange rates from time t−T +1
to t provide information about the innovations. The solution to the signal ex-

traction problem leads to expectations at time t of the unknowns as a function of

observables, which in turn can be written as a function of the innovations them-

selves. One can then compute the average expectation of st+1. Substituting the

result into the interest parity condition (6) leads to a new exchange rate equation.

The coefficients of the polynomials A(L) and B(L) can then be derived by solving

a fixed point problem, equating the coefficients of the conjectured exchange rate

equation when solving the signal extraction problem to those in the equilibrium

exchange rate equation. Although the lag polynomials are of infinite order, for lags

longer than T periods the information dispersion plays no role and an analytical

solution to the coefficients is feasible.

The Townsend method cannot be applied when investors have infinite horizons.

In that case investors maximize

−Et
Ã ∞X
s=0

βse−γc
i
t+s

!
(13)

subject to

wit+1 = (1 + it)w
i
t + (st+1 − st + i∗t − it)bit − itm̃i

t + f(fmi
t)− cit (14)

Appendix E provides a detailed solution method for this problem. The portfolio

maximization problem is now substantially more complicated and the interest rate

parity condition needs to be modified. Investors now need to take into account

uncertainty about future expected returns, and therefore future investment oppor-

tunities. They hedge against this risk when choosing their portfolio, but this hedge

term depends on the infinite state space, which complicates matters. We obtain a

close approximate solution by truncating the state space for sufficiently long lags.
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To be precise, let the state space of observables for an investor i be st−1, ft
and vit, where xt={xt, xt−1, ...}0. The aggregate of the private signals is u, so thatR 1
0 v

i
t = ut. We then conjecture the following equilibrium exchange rate equation

as a function of the aggregate state space and the supply shock bt:

st = λsst−1 + λf ft + λuut + λbbt (15)

We truncate the state space for lags more than T (> T ). Coefficients in the ex-

change rate equation for longer lags are set equal to zero. In our benchmark case

where T = 8, setting T = 25 turns out to be sufficient. A larger T leaves results vir-

tually unchanged. We solve the portfolio maximization problem by maximizing a

Bellman equation, using both the conjectured exchange rate equation and a conjec-

tured value function. The latter depends on the investor’s wealth and a quadratic

function of the investor’s truncated state space. In solving the portfolio maximiza-

tion problem we need to know the expectations of the unknowns ut, .., ut−T+1, bt as
a function of the investor’s state space, which we compute through a Kalman filter

technique. The conjectured exchange rate equation is again equated to the equilib-

rium exchange rate equation that follows from the asset market equilibrium. We

also have to solve a fixed point problem for the parameters of the conjectured value

function. All details can be found in the Appendix. We show in the Appendix that

results based on this approximate solution technique for infinite horizon investors

are almost identical to those based on applying the Townsend technique to the

model with overlapping generations of investors. The results reported in section

IV are based on the latter.

III The Impact of Information Dispersion

In this section we examine the channels through which lack of common knowledge

disconnects the exchange rate from its fundamental determinants. We will show

that information heterogeneity leads to both magnification and endogenous per-

sistence of the impact of non-fundamentals trade on the exchange rate. We first

illustrate the magnification effect for the case T = 1, where there is no infinite

regress and the model has an analytical solution. We then show that higher order

expectations further raise the magnification effect when they differ from simple

average expectations. This is the case for T > 1. Finally, we show that for T > 1
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there is endogenous persistence of the impact of non-fundamentals shocks on the

exchange rate.

III.A Magnification

In addition to assuming T = 1, so that there is no infinite regress problem, we

further simplify by setting ρ1 = ρ2 = 0 and ρb = 0. In this case, equation (7)

becomes:

st =
1

1 + α

·
ft +

α

1 + α
Etut

¸
− α

1 + α
γσ2t bt (16)

Only the average expectation of ut appears, which is next period’s fundamental.

All higher order expectations are zero in this case.21

III.A.1 Common knowledge

As a benchmark, we first consider the case where all investors receive the same

information. They have two pieces of information about ut: the signal vt = ut+ εvt
and the fact that ut = εut . Defining the precision of these signals as β

v,c ≡ 1/σ2v,c
and βu ≡ 1/σ2u, the conditional expectation of ut is

Eitut = Etut =
βv,cvt
d

(17)

where d ≡ 1/vart(ut) = βv,c + βu. Substitution into (16) yields the equilibrium

exchange rate:

st =
1

1 + α
ft + λvvt + λcb,tbt (18)

where

λv =
α

(1 + α)2
βv,c

d
(19)

λcb,t = − α

1 + α
γσ2t (20)

In addition to the observable fundamental, ft, both the signal, vt, and the

non-fundamental factor, bt, affect the exchange rate. Notice that in this case the

exchange rate is fully revealing, since by observing st investors can perfectly deduce

bt.

21If we allow for some persistence in the fundamental, higher order expectations are not zero,

but still equal to average expectations of future fundamentals.
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The weight of the signal naturally depends on its precision βv,c. The weight of

the bt shock depends on σ2t = vart(st+1), the conditional variance of next period’s

exchange rate. We show in Appendix B that there are two steady-states values

for σ2t , but only one (the low value) is well defined. Hence, we focus on the low σ2

steady state. This implies that the coefficient λcb,t is constant, λ
c
b,t = λcb.

III.A.2 Heterogeneous Information

We now assume that investors get private signals vit about ut as given in (10).

Due to the law of large numbers the aggregation of private signals is ut, which

implies that the exchange rate will be affected directly by ut. Therefore, individual

investors get information about ut by observing the exchange rate st. However, the

exchange rate is not fully revealing, as it gives information about a combination

of ut and bt. To determine the information given by st, we need to know the

equilibrium exchange rate equation. By analogy to (18), the investor conjectures

that:

st =
1

1 + α
ft + λuut + λbbt (21)

Since an investor observes ft, the signal he gets from the exchange rate can be

written Ã
st − ft

1 + α

!
/λu = ut +

λb
λu
bt (22)

The variance of this signal is (λb/λu)
2σ2b . Consequently, investor i infers E

i
tut from

three sources of information: i) the distribution of ut; ii) the signal v
i
t; iii) the

exchange rate (i.e., (22)). As usual, Eitut is given by a weighted average of the

three signals, with the weights determined by the precision of each signal. We

have:

Eitut =
βvvit + βs(st − ft

1+α
)/λu

D
(23)

where βv = 1/σ2v , β
s = 1/(λb/λu)

2σ2b and D = 1/var(ut) = βv + βu + βs. For the

exchange rate signal, the precision is complex and depends both on σ2b and λb/λu,

the latter being endogenous. By substituting (23) into (16) and using the fact thatR 1
0 v

i
tdi = ut in computing Etut, it can be easily seen that (21) indeed holds.
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III.A.3 The Magnification Factor

Since investors do not know whether a change in the exchange rate is driven by

non-fundamentals shocks or fundamentals information of other investors, they al-

ways revise their expectations of fundamentals when the exchange rate changes

(equation (23)). This magnifies the impact of non-fundamental shocks on the ex-

change rate. More specifically, from (16) and (23), we can see that a change in bt

has two effects on st. First, it affects st directly in (16) through the risk-premium

channel. Second, this direct effect is magnified by an increase in Etut from (23).

The degree of magnification is given by z > 1:

λb = zλ
c
b (24)

where λcb is defined in (20).
22 The magnification factor can be written as

z = 1 + x2
σ2v
σ2b

(25)

where x = λu/λb is the relative weight of ut and bt in the exchange rate equation.

Figure 1 shows the impact of some key parameters on magnification. A rise

in the private signal variance σ2v at first raises magnification and then lowers it

(Panel A). Two opposite forces are at work. First, as shown in (25), for a given

x an increase in σ2v raises magnification. This is because more weight is given

to the exchange rate as a source of information. Second, a rise in σ2v implies

less information and therefore a lower relative weight x of fundamentals in the

exchange rate equation (Panel B). This makes the exchange rate less informative

about fundamentals and reduces the magnification factor. On the other hand, a

rise in the variance σ2b of non-fundamentals shocks always reduces magnification

since it makes it more difficult to extract information about fundamentals from

22We implicitly assume that the conditional variance of the exchange rate is the same in the

two models. Holding constant the precision of the private signal, one can always change the

precision of the signal with common knowledge to make sure that this is the case. In section IV

we show that at the quantitative level the main results are not much different when we instead

hold the precision of the signals the same in the two models. In that case the conditional variance

can be higher in either model. On the one hand, the exchange rate provides an additional piece

of information in the heterogeneous information model, which lowers the conditional variance.

On the other hand, the magnification factor z raises the conditional variance.
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the exchange rate.23 Numerical simulations also show that a rise in the variance

σ2u reduces the magnification factor. Intuitively, a higher variance of fundamentals

shocks raises the risk-premium and therefore increases the relative weight of non-

fundamentals shocks. This reduces the information content of the exchange rate.

III.B Higher Order Expectations: Further Magnification

As discussed in section II, higher order expectations differ from simple average

expectations when expectations of future fundamentals at time t are affected by

private signals from previous periods. In the context of a model that satisfies this

property, Allen, Morris and Shin [2002] show that higher order expectations of

a future fundamental are more sensitive to public information than the average

expectation: in forming expectations of other investors’ expectations more weight

is given to public information that is available to all investors. Since in our setup

the exchange rate is an important public signal, it has a larger impact on higher

order expectations, leading to additional magnification.24

In our model, expectations of future fundamentals are affected by private sig-

nals from previous periods as long as T > 1. Consider the case where T = 2, while

we still keep ρ1 = ρ2 = ρb = 0. The exchange rate equation (7) becomes:

st =
1

1 + α

"
ft +

α

1 + α
Etut−1 +

µ
α

1 + α

¶2
E
2
tut + ...

#
− α

1 + α
γσ2t bt (26)

where the number of terms in square brackets goes to infinity. Thus, we have

infinite regress. In order to see the role of higher order expectations, consider

E
2
tut = Et(Et+1ut). Appendix C shows that:

E
2
tut = Etut + ku(Etut − ut) (27)

where ku = ∂Eit+1ut/∂v
i
t > 0 is the impact of the private signal at time t on an

investor’s expectation at time t+ 1. Since Etut depends positively on st in a way

analogous to (23), higher order expectations give more weight to the exchange

rate than simple average expectations, contributing to the magnification effect.

Appendix C shows that as the order of expectation increases further, even more

weight is given to the exchange rate.

23This can be seen directly from (25). It is only partially offset by the resulting rise in x.
24Allen, Morris and Shin [2002] focus on the case of infinite noise, so that the asset price itself

is not a signal.
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III.C Persistence

An additional feature of the model is the endogenous persistence of the impact of

non-fundamental shocks on the exchange rate. This is caused by the combination of

heterogeneous information and giving positive weight to information from previous

periods in forming expectations (for T > 1). To illustrate persistence, consider the

case presented above where T = 2. Persistence comes from the fact that Eitut−1
depends on prior information about ut−1 at t− 1. One source of prior information
is the exchange rate at t − 1. Since the exchange rate at t − 1 is affected by bt−1
a non-fundamental shock at t − 1 continues to affect the exchange rate at time t
by affecting the expectation at time t of the future fundamental ut−1 = ft+1. This
is the case even if the non-fundamental shock itself has no persistence (ρb = 0),

as we have assumed so far.25 In the common knowledge model, a b-shock has no

persistent impact on the exchange rate if the shock itself has no persistence.

From (15) it is immediately clear that an entirely transitory b-shock continues

to impact the exchange rate for T periods. After T periods there is no longer any

uncertainty about whether a change in the exchange rate T periods earlier was

caused by non-fundamentals or fundamentals. The reason is that the vector ut

is known at t + T . From (15) investors then also know bt at time t + T . The

impact of a b-shock dies down over time as investors gradually learn more about

the fundamentals.

The persistence of the b-shock on the exchange rate is also affected by the

persistence of the shock itself. In the common knowledge model, the persistence

of the impact of a b-shock on the exchange rate is the same as the persistence of

the shock itself. In the heterogeneous information model, persistence is largely

driven by the persistence of the magnification factor. More precisely, it is driven

by the persistence of the impact of the b-shock on expected future fundamentals

and therefore the persistence of the rational confusion. When the b-shock itself

becomes more persistent, it becomes more difficult for investors to learn from

exchange rates subsequent to time t whether a change in the exchange rate at time

t was a result of fundamentals or non-fundamentals (bt). The rational confusion is

25This result is related to findings by Brown and Jennings [1989] and Grundy and McNichols

[1989], who show in the context of two-period noisy rational expectations models that the asset

price in the second period is affected by the asset price in the first period.
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therefore more persistent and so is the impact of b-shocks on the exchange rate.26

IV The General Dynamic Model

In this section we fully solve the general dynamic structure of the model where

T > 1 and both fundamentals and non-fundamentals follow an autoregressive pro-

cess. We first illustrate the key implications of the model with a benchmark param-

eterization. Then we consider how the main features are affected by the model’s

parameters, which provides further insight into the operation of the model. Finally,

in the last subsection we discuss the ‘excess volatility’ puzzle and solve a sticky-

price version of the model. We illustrate how information dispersion contributes

to excess volatility.

IV.A A Benchmark Case

The parameters of the benchmark case are reported in Table 1. They are chosen

mainly to illustrate the potential impact of information dispersion; they are not

calibrated or chosen to match any data moments. We assume that u, and therefore

the fundamental, follows a random walk (ρ = 0). We assume that the extent of

private information is small by setting a high standard deviation of the private

signal error of 0.08, versus a 0.01 standard deviation of u. Although we have made

assumptions about both σb and risk-aversion γ, they enter multiplicatively in the

model, so only their product matters. We allow for an AR coefficient of 0.8 of the

non-fundamentals b-shock. Finally, we assume that T = 8, so that agents obtain

private signals about fundamentals eight periods later.

Figure 2 shows some of the key results from the benchmark parameterization.

Panels A and B show the dynamic impact on the exchange rate in response to

one-standard deviation shocks in the private and common knowledge models. In

both models the non-fundamentals shocks are the b-shocks. In the heterogeneous

26When bt follows a random walk, the persistence of its impact on the exchange rate is smaller in

the heterogeneous information model than in the common knowledge model because the rational

confusion in the heterogeneous information model is temporary (lasts T periods). However,

persistence in the common knowledge model has little meaning when the impact of b-shocks on

the exchange rate is very small.

17



information model the fundamentals shocks are the u-shocks. In the common

knowledge model the fundamentals shocks are both u-shocks and εv shocks, which

affect the exchange rate through the publicly observable fundamentals f and v. In

order to facilitate comparison, we again set the precision of the public signal such

that the conditional variance of next period’s exchange rate is the same as in the

heterogeneous information model. This implies that the b-shocks have the same

risk-premium effect in the two models. We will show below that our key results

do not depend on the assumed precision of the public signal.

Magnification

The magnification factor in the benchmark parameterization turns out to be

substantial: 7.2. This is visualized in Figure 2 by comparing the instantaneous

response of the exchange rate to the b-shocks in the two models in panels A and

B. The only reason the impact of a b-shock is so much bigger in the heteroge-

neous information model is the magnification factor associated with information

dispersion.

We saw in section III that higher order expectations contribute to the magnifi-

cation factor. It is hard to quantify the role of higher order expectations since one

cannot remove them. Nonetheless we can get a sense of the importance of higher

order expectations by doing an artificial experiment: we replace the higher order

expectations of future f ’s and b’s in the exchange rate equation (7) with simple

average expectations. Both with and without higher order expectations the coef-

ficient on bt on the right hand side of (7) is λ̄b = −αγσ2/(1 + α). The question is

how the right-hand side of (7), i.e., the expected present discounted value of future

fundamentals and b’s, depends on st. Let this impact be ν. Then, the coefficient

on bt in the equilibrium exchange rate equation (15) is λb = λ̄b/(1−ν). For higher

order expectations ν = 0.962, while for average expectations ν = 0.907.27 This

implies that 1/(1− ν) is 2.4 larger under higher order expectations, implying also

a magnification factor that is 2.4 larger. This suggests a substantial role for higher

27For higher order expectations ν follows immediately since we know λb from the solution

method.
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order expectations in contributing to the magnification factor.

Persistence

We can see from panel A that after the initial shock the impact of the b-shocks

dies down almost as a linear function of time. The half-life of the impact of the

shock is 3 periods. After 8 periods the rational confusion is resolved and the

impact is the same as in the public information model, which is close to zero. The

meaning of a 3-period half-life depends of course on what we mean by a period in

the model. As we will discuss below, what matters in the model is not so much

the length of a period, but the length of time it takes for uncertainty about future

fundamentals to be resolved.

Exchange rate disconnect in the short and the long run

Panel C reports the contribution of non-fundamentals trade to the variance of

st+k−st at different horizons. In the heterogeneous information model, 70% of the
variance of a 1-period change in the exchange rate is driven by non-fundamentals

shocks, while in the common knowledge model it is a negligible 1.3%. This is

almost entirely due to the much larger impact of non-fundamentals shocks in the

heterogeneous information model.

The low contribution of non-fundamentals trade to exchange rate volatility

in the common knowledge model does not depend on the extent of noise in the

public signal. In our simulations, we set the standard deviation of the public signal

noise at 0.033, so that the unconditional variance of the 1-period change in the

exchange rate is the same as in the heterogeneous information model. When we set

the standard deviation of the public noise at 0 and 0.08 (same as private signal),

the contribution of non-fundamentals shocks to the variance of the 1-period change

in the exchange rate is respectively 0.6% and 2.4%.

While in the short-run non-fundamentals shocks dominate in the heterogeneous

information model, in the long-run fundamentals shocks dominate. The impact of

a change in non-fundamentals trade on the exchange rate gradually dies down as

investors learn more about the fundamentals and rational confusion dissipates. On

the other hand, the impact of u-shocks on the exchange rate rises over time as we

get closer to the time of the rise in the fundamental f and as agents gradually

learn that the shock took place. In panel C we see that the contribution of non-
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fundamentals shocks to the variance of st+k−st declines as the horizons k increases.
For a three-period horizon the contribution of the two shocks to exchange rate

volatility is about the same, while the contribution of b-shocks declines to less

than 20% after ten periods.

In order to determine the relationship between exchange rates and fundamen-

tals, panel D reports the R2 of a regression of st+k − st on all current and lagged
observable fundamentals. In the heterogeneous information model this includes all

one period changes in the fundamental ft, from t+ k− 1 to t+ k and back. In the
common knowledge model it also includes the corresponding one-period changes in

the public signal v. The R2 is close to 1 for all horizons in the common knowledge

model, while it is much lower in the heterogeneous information model.28 At the

one-period horizon it is only 0.14, and then rises as the horizon increases, to 0.8

for a 20-period horizon. This is consistent with extensive findings that macroeco-

nomic fundamentals have weak explanatory power for exchange rates in the short

to medium run, starting with Meese and Rogoff [1983], and findings of a much

closer relationship over longer horizons.29 Two factors account for the results in

panel D. The first is that the relative contribution of non-fundamentals shocks

to exchange rate volatility is large in the short-run and small in the long-run, as

illustrated in panel C. The second factor is that through private signals the ex-

change rate is also affected by future fundamentals that are not yet observable

today. This second factor again affects the exchange rate more in the short-run

than the long-run.

Exchange rate and future fundamentals

Recently Engel and West [2002] and Froot and Ramadorai [2002] have reported

evidence that exchange rate changes predict future fundamentals, but only weakly

so. Our model is consistent with these findings. Panel E of Figure 2 reports the

R2 of a regression ft+k − ft+1 on st+1 − st for k ≥ 2. The R2 is positive, but is
never above 0.14. The exchange rate is affected by the private signals of future

fundamentals, which aggregate to u. However, most of the short-run volatility of

28The high R2 in the common knowledge model is again independent of the extent of noise in

the public signal.
29See MacDonald and Taylor [1993], Mark [1995], Chinn and Meese [1995], Mark and Sul [2001]

and Froot and Ramadorai [2002].
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exchange rates is associated with non-fundamentals shocks, which do not predict

future fundamentals. Even though exchange rates have only weak explanatory

power for future fundamentals, investors in the model still give a lot of weight to

the exchange rate as a source of information because the private signals are even

weaker.

IV.B Sensitivity to Model Parameters

In order to gain further insight, we now examine how the main results are affected

by parameter values. Figure 3 contains seven panels showing (i) the magnification

factor, (ii) the contribution of b-shocks to var(st+1 − st), and (iii) persistence,
measured by the half-life of the impact of b-shocks on the exchange rate. They are

each plotted as a function of a specific parameter.

Private information

Perhaps the most important parameter of the model is the precision of the

private signal. Panel A shows the sensitivity to σv, the standard deviation of the

error in the private signal. In section III we already discussed the impact of σv

on magnification, zt. Even though the current model is much richer, the results

in this respect are qualitatively the same as before. In particular, magnification

rises up to σv = 0.06, and then drops. Consistent with that we also find that the

contribution of non-fundamentals shocks to exchange rate volatility first rises, up

to σv = 0.08, and then drops.

The overall implication from these results is that the impact of information dis-

persion on exchange rate dynamics is most powerful for some intermediate range.

When σ2v is low it is possible to raise the magnification factor, increase the contri-

bution of non-fundamentals shocks to exchange rate volatility, while at the same

time making the impact of non-fundamentals shocks more persistent. When infor-

mation becomes too disperse, however, the magnification factor decreases and the

contribution of non-fundamentals shocks to exchange rate volatility is lower.

Non-fundamental shocks

Panel B illustrates the role of the standard deviation σb of non-fundamentals

trade, and panel C the role of persistence ρb of the non-fundamentals shocks. Both
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a higher standard deviation and more persistence of the non-fundamentals shocks

reduce magnification as the exchange rate becomes less informative about funda-

mentals. In both cases the contribution of non-fundamentals shocks to exchange

rate volatility is almost constant over a wide range of parameters. One can for

example significantly reduce the standard deviation of non-fundamentals shocks,

while the contribution of these shocks to exchange rate volatility remains almost

the same. This is a result of two factors. First, the magnification factor rises. Sec-

ond, less weight is given to private signals when the exchange rate signal becomes

stronger, weakening the contribution of u-shocks to exchange rate volatility. When

σb → 0 the magnification factor converges to infinity, but the contribution of non-

fundamentals shocks to exchange rate volatility nonetheless goes to zero. That is

a desirable property since it would be peculiar if infinitesimally small idiosyncratic

trades become the dominant source of exchange rate volatility.

As anticipated in the previous section, we also see from panel C that a rise

in persistence of b-shocks leads to more persistence of its impact on the exchange

rate. It takes more time for investors to distinguish between fundamentals and

non-fundamentals shocks, so that the rational confusion persists longer.

It is important to stress that the closer relationship between exchange rates and

fundamentals in the long-run than the short run is entirely the result of the fact that

the rational confusion dissipates in the long run; it is not due to our assumption

that non-fundamentals trade is stationary, while the fundamental is non-stationary.

Consider for example the case where ρb = 1 and σb = 0.006 and other parameters

remain unchanged. Both fundamentals and non-fundamentals trade are then non-

stationary. In this case, the long-run impact of non-fundamentals trade is the same

in the public and heterogeneous information models and is only associated with

the risk-premium channel. However, the short-run impact is much larger in the

heterogeneous information model due to the magnification factor (which is 4.1 in

this case), while in the common knowledge model the short and long-run impact
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are the same.30

Fundamental shocks

Panels D and E of Figure 3 show the impact of respectively the standard devia-

tion and persistence of fundamentals shocks. An increase in either σu or ρ reduces

the magnification factor. The increased risk raises the risk-premium and therefore

the coefficient of bt in the exchange rate. This makes it more difficult to extract

information about fundamentals from the exchange rate. The contribution of non-

fundamentals shocks to exchange rate volatility is again remarkably insensitive to

parameters. Even though more volatile fundamentals now generate more exchange

rate volatility, the same is the case for non-fundamentals shocks as a result of the

rise in the risk-premium.

The parameter T

Panel F shows the impact of T . Magnification rises as agents have private

information about fundamentals further into the future (T bigger). The higher T ,

the more information agents have at any point in time, and therefore the lower

the uncertainty about next period’s exchange rate. This reduces the risk-premium

and therefore the coefficient of bt in the exchange rate, so that the exchange rate

becomes more informative about fundamentals and the magnification factor rises.

Persistence also increases as T goes up as it takes T periods for investors to learn

the actual size of the b-shock and for rational confusion to dissipate.

The size of the parameter T also brings up the question of what we mean by a

“period” in the model. This is particularly relevant in the context of persistence.

It turns out that what is critical in the model is not the length of a period, but

the length of time it takes for uncertainty about future macro variables to be

resolved. For example, assume that T is eight months. If a period in our model

is a month, then T = 8. If a period is three days, then T = 80. When we change

the length of a period we also need to change other model parameters, such as

the standard deviations of the shocks. We find that the half-life of the impact of

30In this case, the relative contribution of non-fundamentals trade to exchange rate volatility

is 76% for a 1-period horizon and 19% for a 20-period horizon. Similarly, the R2 of a regression

of the change in the exchange rate on current and lagged observable fundamentals rises from 0.2

for a 1-period horizon to 0.75 for a 20-period horizon.
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non-fundamentals shocks on the exchange rate that can be generated by the model

remains virtually unchanged as we change the length of a period.31 For T = 8 the

model can generate a half-life of about 3, as in the benchmark parameterization.

When T = 80, we can obtain a half-life of about 30 when we change other model

parameters.32 In both cases the half-life is 3 months. Persistence is therefore

driven critically by the length of time it takes for uncertainty to resolve itself.

Deviations from fundamentals can be very long lasting when expectations about

future fundamentals take a long time to verify, such as expectations about the

long-term technology growth rate of the economy.

IV.C ’Excess’ Volatility

Although our focus has been on the exchange rate determination puzzle, we briefly

discuss the puzzle of excess volatility of exchange rates relative to fundamen-

tals. The exchange rate determination puzzle and the excess volatility puzzle

are two distinct puzzles that may not have the same explanation. For example,

the Dornbusch-overshooting model can easily generate excess volatility, but ex-

change rates are driven entirely by fundamentals. In our model the opposite is

true under the benchmark parameterization. The model generates a weak rela-

tionship between exchange rates and fundamentals, but the standard deviation of

a one-period change in the exchange rate is only 0.7 times the standard deviation

of a one-period change in the fundamentals. This does not mean that information

dispersion plays no role in understanding the excess volatility puzzle. We will show

that information dispersion significantly contributes to excess volatility, but other

factors play a role as well. In particular, we will introduce nominal rigidities and

increase the persistence of the fundamental.

In order to shed light on the excess volatility puzzle, consider one-period excess

volatility measured by the ratio of the variances of exchange rate and fundamentals

31In doing so we restrict parameters such that (i) the contribution of b-shocks to var(st+1−st)
is held at around 70% and (ii) the impact of b-shocks on exchange rate volatility remains largely

driven by information dispersion (large magnification factor).
32For example, when we change the benchmark parameterization such that T = 80, σv = 0.26,

σu = 0.0016 and α = 44, the half-life is 28 periods. The magnification factor is 48 and the

contribution of non-fundamentals trade to 1-period changes in the exchange rate is 69%.
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changes. It is useful to write this ratio as follows:

var(st+1 − st)
var(ft+1 − ft) =

1

1− contr
varu(st+1 − st)
var(ft+1 − ft) (28)

where contr is the fraction of the unconditional variance of one-period exchange

rate changes contributed by non-fundamentals trade and varu(st+1−st) is the vari-
ance of one-period exchange rate changes resulting from fundamentals shocks. The

excess volatility ratio is made of two elements. The first element depends on the

contribution of non-fundamentals trade to exchange rate volatility. We have seen

that information dispersion significantly raises contr, for example to 0.7 under the

benchmark parameterization. This raises excess volatility ratio by a factor larger

than 3. So information dispersion raises the first element. The second element de-

pends on how much shocks to fundamentals themselves contribute to the ratio of

exchange rate to fundamentals variance. In the benchmark parameterization this

second element is very low: 0.15. Even though the fundamental follows a random

walk, this ratio is less than 1 in the benchmark parameterization both because a

change in ut affects the fundamental in the future and because investors only have

incomplete information about the change in ut.

In order to obtain substantial excess volatility, we need to raise the second term

on the right hand side of (28). For this purpose, we introduce two changes in the

benchmark model. First, we raise ρ. This implies that a rise in the fundamental

today is expected to lead to a much larger long-run increase in the fundamen-

tal, so that the exchange rate changes much more than an unexpected increase in

the fundamental. Second, we introduce nominal rigidities, as in the Dornbusch-

overshooting model. We illustrate the impact of nominal rigidities by assuming

that prices gradually adjust with delay to restore purchasing power parity accord-

ing to:

p∗t+1 − p∗t = φ(pt − st − p∗t ) (29)

where φ is a parameter between 0 and 1, with a lower number implying more rigid

prices.33

Consider the impact of raising ρ from 0 to 0.8 and introducing nominal rigidi-

ties with φ = 0.1. We also reduce the standard deviation of non-fundamentals

33When φ = 1, prices adjust with only one period delay to restore purchasing power parity.

This is still slower than in the baseline model, where prices adjust instantaneously.
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trade from 0.01 to 0.003.34 Under this parameterization the contribution of non-

fundamentals trade to exchange rate volatility is 82% (contr=0.82) and it is still

mostly the result of information dispersion as the magnification factor remains

high at 3.4. Fundamentals shocks alone lead to a variance of the exchange rate

that is 1.7 times the variance of fundamentals (the second element in (28)). The

large contribution of non-fundamentals shocks makes the overall variance of the

1-period change in the exchange rate 9.4 times the variance of 1-period changes in

fundamentals. This example shows that information dispersion exacerbates excess

volatility.

V Conclusion

The large volume of trade in the foreign exchange market and the close relation-

ship between order flow and exchange rates suggests that investor heterogeneity

may be a key element in understanding exchange rate behavior. In this paper,

we have explored the implications of information dispersion in a simple model of

exchange rate determination. We have shown that these implications are rich and

that investors’ heterogeneity could be an important element in explaining the be-

havior of exchange rates. In particular, the model can account for some important

stylized facts on the relationship between exchange rates and fundamentals: (i)

fundamentals have little explanatory power for short to medium run exchange rate

movements, (ii) over longer horizons the exchange rate is primarily driven by fun-

damentals, (iii) exchange rate changes are a weak predictor of future fundamentals.

We have also shown that information dispersion contributes to excess volatility of

the exchange rate relative to fundamentals, although other factors play a role as

well.

The paper should be considered only as a first step in a promising line of

research. A natural next step is to introduce microstructure institutions such as

foreign exchange dealers to the model. This will help to better integrate microstruc-

34The increased exchange rate volatility that results from nominal rigidities and raising ρ re-

duces the magnification factor. We therefore reduce the standard deviation of non-fundamentals

shocks in order to keep the magnification factor high. The contribution of non-fundamentals

shocks then remains primarily driven by the rational confusion resulting from information

dispersion.
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ture and macro models of exchange rate determination. Moreover, it should enable

us to bring the model to the data. Modeling microstructure institutions allows us

to compute order flow in the model, which is closely related to non-fundamentals

shocks. This may give us an estimate on the size of these shocks and determine

the extent of magnification that is necessary to understand observed exchange rate

volatility. The magnification factor may be large. Back-of-the-envelope calcula-

tions by Gennotte and Leland [1990] in the context of a static model for the U.S.

stock market crash of October 1987 suggest that the impact of a $6 bln. non-

fundamental shock was magnified by a factor 250 due to rational confusion about

the source of the stock price decline.

There are two other natural directions in which the model can be extended.

The first is to explicitly model nominal rigidities as in the “new open economy

macro” literature. In that literature exchange rates are entirely driven by funda-

mentals. Conclusions that have been drawn about optimal monetary and exchange

rate policies are likely to be substantially revised when introducing investor het-

erogeneity. Another direction is to consider alternative information structures.

For example, the information received by agents may differ in its quality or in its

timing. There can also be heterogeneity about the knowledge of the underlying

model.35 The rapidly growing body of empirical work on order flows in the mi-

crostructure literature is likely to increase our understanding of the nature of the

information structure, providing guidance to future modeling.

35See Honkapohja and Mitra (2002) for a recent analysis in different contexts.
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Appendix

A Derivation of equation (7)

It follows from (1), (2), (3), and (6) that

st =
α

1 + α
Ē1t (st+1) +

1

1 + α
ft − α

1 + α
γσtbt (30)

Therefore

Ē1t (st+1) =
α

1 + α
Ē2t (st+2) +

1

1 + α
Ē1t (ft+1)−

α

1 + α
γσt+1Ē

1
t (bt+1) (31)

Substitution into (30) yields

st =
µ

α

1 + α

¶2
Ē2t (st+2) +

1

1 + α

1X
k=0

µ
α

1 + α

¶k
E
k
t (ft+k − αγσt+kbt+k) (32)

Continuing to solve for st this way by forward induction yields (7).

B Conditional variance of next period’s exchange

rate

Consider the case of common knowledge. From (18) at t+ 1:

σ2t = a+ bσ
4
t+1 (33)

where a = (1 + dα̃βv,c/βu)/d(1 + α)2, b = γ2σ2b eα and eα = (α/(1 + α))2. In the

steady state, σ2 = σ2t = σ2t+1. It is easy to see that:

σ2 =
1±√1− 4ab

2b
(34)

Thus, as long as 4ab < 1, there are two steady states with low and high σ2. From

(33), dσ2t /dσ
2
t+1 = 2bσ

2 = 1 ±√1− 4ab. Thus, dσ2t /dσ2t+1 < 1 around the low σ2

steady state and dσ2t /dσ
2
t+1 > 1 for the high σ2 steady state. Since σ2t is a forward-

looking variable, only the low σ2 steady state gives a stable equilibrium.36 The

36See, for example, Blanchard and Fischer [1989], ch. 5 for a discussion of these issues.
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high steady state equilibrium is knife-edge, in that it can only be an equilibrium

today if one believes that σt is exactly the high steady state equilibrium at all

future dates. In the model with heterogeneous information, the results are similar,

even though σ2 has to be evaluated numerically.

C Higher order expectations

In this Appendix we derive a lemma determining the bias of higher order expecta-

tions that is used to derive Equation (27). Consider a stochastic variable xt+1 in

the model with T > 1. To estimate its value at time t+1, assume that an investor

uses a linear rule based on all relevant available information:

Eit+1xt+1 = ksst + k
1
sst+1 + kf ft + k

1
fft+1 + kuv

i
t + k

1
uv
i
t+1 (35)

Only private signals in the last T periods matter, such that vi0t = (v
i
t, v

i
t−1, ..., v

i
t−T+2).

Lemma 1: When investors use the rule (35) we have:

Et(Et+1xt+1)−Etxt+1 = ku(Etut − ut) (36)

Proof: First compute Etxt+1. From (35) we find:

Eitxt+1 = E
i
t(E

i
t+1xt+1) = ksst+kf ft+kuv

i
t+k

1
sE

i
tst+1+k

1
fE

i
tft+1+k

1
uE

i
tv
i
t+1 (37)

Aggregating:

Etxt+1 = ksst + kf ft + kuut + k
1
sEtst+1 + k

1
fEtut+1−T + k

1
uEtut+1 (38)

Now compute Et(Et+1xt+1). Aggregating (35) we have:

Et+1xt+1 = ksst + kf ft + kuut + k
1
sst+1 + k

1
fft+1 + k

1
uut+1 (39)

Then:

Et(Et+1xt+1) = ksst + kf ft + kuEtut + k
1
sEtst+1 + k

1
fEtut+1−T + k

1
uEtut+1 (40)

Subtracting (38) from (40) gives (36). Q.E.D.
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Since Etut depends positively on st, second order order expectations give more

weight to the exchange rate than simple average expectations. It is easy to see

that third order expectations give more weight to the exchange rate than second

order expectations, and so on. For third order expectations, using (36) one period

ahead, we have:

E
3
txt+2 = E

2
txt+2 + ku(EtEt+1ut+1 −Etut+1) (41)

where from Lemma 1

Et(Et+1ut+1)−Etut+1 = ku,1(Etut − ut) (42)

Here ku,1 is a matrix with the coefficients on v
i
t of E

i
t+1ut+1.

D Solution method with two-period overlapping

investors

This method is related to Townsend (1983, section VIII). We start with the con-

jectured equation (12) for st and check whether it is consistent with the model,

in particular with equation (6). For this, we need to estimate the conditional mo-

ments of st+1 and express them as a function of the model’s innovations. Finally

we equate the parameters from the resulting equation to the initially conjectured

equation.

D.1 The exchange rate equation

From (2), (1), and the definition of ft, it is easy to see that i
∗
t − it = (ft − st)/α.

Thus, (6) gives (for a constant σ2t ):

st =
α

1 + α
E(st+1) +

ft
1 + α

− α

1 + α
γbtσ

2 (43)

We want to express (43) in terms of current and past innovations. First, we have

ft = D(L)ε
u
t−T , whereD(L) = d1+d2L+d3L+... is given by (11) and the definition

of ut, with ds = (1 − ρs)/(1 − ρ). Second, using (5) we can write bt = C(L)εbt ,

where C(L) = 1+ρbL+ρ2bL
2+ .... What remains to be computed are E(st+1) and

σ2.
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Applying (12) to st+1, decomposing A(L) and B(L), we have

st+1 = a1ε
u
t+1 + b1ε

b
t+1 + θ0ξt +A∗(L)εut−T +B

∗(L)εbt−T (44)

where ξ0t = (εut , ..., ε
u
t−T+1, ε

b
t , ..., ε

b
t−T+1) represents the vector of unobservable in-

novations, θ0 = (a2, a3, ..., aT+1, b2, ..., bT+1) and A∗(L) = aT+2 + aT+3L + ...(with
a similar definition for B∗(L)). Thus, we have (since εuj and εbj are known for

j ≤ t− T ):
Eit(st+1) = θ0Eit(ξt) +A

∗(L)εut−T +B
∗(L)εbt−T (45)

σ2 = vart(st+1) = a
2
1σ
2
u + b

2
1σ
2
b + θ0vart(ξt)θ (46)

We need to estimate the conditional expectation and variance of the unobserv-

able ξt as a function of past innovations.

D.2 Conditional moments

We follow the strategy of Townsend (1983, p.556), but use the notation of Hamilton

[1994, chapter 13]. First, we subtract the known components from the observables

st and v
i
t and define these new variables as s

∗
t and v

i∗
t . Let the vector of these

observables be Yi
t =

³
s∗t , s

∗
t−1, ..., s

∗
t−T+1, v

i∗
t , ..., v

i∗
t−T+1

´
. From (44) and (10), we

can write:

Yi
t = H

0ξt +wi
t (47)

where wi
t = (0, ..., 0, ε

vi
t , ..., ε

vi
t−T+1)

0 and

H0 =



a1 a2 ... aT b1 b2 ... bT

0 a1 ... aT−1 0 b1 ... bT−1
... ... ... ... ... ... ... ...

0 0 ... a1 0 0 ... b1

d1 d2 ... dT 0 0 ... 0

0 d1 ... dT−1 0 0 ... 0

... ... ... ... ... ... ... ...

0 0 0 d1 0 0 ... 0


The unconditional means of ξt and w

i
t are zero. Define their unconditional

variances as eP and R. Then we have (applying eqs. (17) and (18) in Townsend):
Eit(ξt) =MY

i
t (48)
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where:

M= ePH h
H0 ePH+Ri−1 (49)

Moreover, P ≡ vart(ξt) is given by:
P= eP−MH0 eP (50)

D.3 Solution

First, σ2 can easily be derived from (46) and (50). Second, substituting (48) and

(47) into (45), and averaging over investors, gives the average expectation in terms

of innovations:

Et(st+1) = θ0MH0ξt +A∗(L)εut−T +B
∗(L)εbt−T

We can then substitute Et(st+1) and σ2 into ( 43) so that we have an expression

for st that has the same form as (12). We then need to solve a fixed point problem.

Although A(L)and B(L) are infinite lag operators, we only need to solve a

finitely dimensional fixed point problem in the set of parameters (a1, a2, ..., aT , b1, ..., bT+1).

This can be seen as follows. First, it is easily verified by equating the parameters

of the conjectured and equilibrium exchange rate equation for lags T and greater

that bT+s+1 =
1+α
α
bT+s + γσ2ρT+s−1b and aT+s+1 =

1+α
α
aT+s − 1

α
ds for s ≥ 1. As-

suming non-explosive coefficients, the solutions to these difference equations give

us the coefficients for lags T + 1 and greater: bT+1 = −αγσ2ρTb /(1 + α − αρb),

bT+s = (ρb)
s−1bT+1 for s ≥ 2, aT+1 =

1+α
1+α−ρ , and aT+s+1 =

1+α
α
aT+s − 1

α
ds for

s ≥ 1.
The fixed point problem in the parameters (a1, a2, ..., aT , b1, ..., bT+1) consists of

2T+1 equations. One of them is the bT+1 = −αγσ2ρTb /(1+α−αρb). The other 2T
equations equate the parameters of the conjectured and equilibrium exchange rate

equations up to lag T − 1. The conjectured parameters (a1, a2, ..., aT , b1, ..., bT+1),
together with the solution for aT+1 above allow us to compute θ, H, M and σ2,

and therefore the parameters of the equilibrium exchange rate equation. We use

the Gauss NLSYS routine to solve the 2T +1 non-linear equations. A method that

works as well (and is more efficient for large T ) is to assume starting values for

these parameters, map them into a new set of parameters by solving the equilib-

rium exchange rate equation, and continue this process until it converges, which

is usually the case.
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E Solution method with infinite-horizon investors

We now describe the method for solving the equilibrium exchange rate in the model

with infinite-horizon investors. Asset demand, which follows from the maximiza-

tion problem (13)-(14), is more complex than in the two-period case. In particular,

investors hedge uncertainty about changes in expected future returns. Our solu-

tion method is approximate, based on truncating information after T periods. We

proceed in six steps: i) we conjecture an exchange rate equation; ii) we derive the

expectations of ut and bt with a Kalman filter, using the conjectured exchange

rate equation; iii) we compute the asset demand based on these expectations; iv)

we find the equilibrium exchange rate that clears the foreign exchange market; v)

we discuss the numerical method used to equate the conjectured exchange rate

equation to the one that solves the foreign exchange market equilibrium; vi) we

report some numerical results for the benchmark parameterization and compare it

to the two-period model.

E.1 The exchange rate equation

We conjecture the following equilibrium exchange rate equation

st = λsst−1 + λf ft + λuut + λbbt (51)

Our solution method relies on truncating at sufficiently large lags T , so that

st−1 = (st−1, st−2, ..., st−T )
0 λs = (λ

1
s,λ

2
s, ...,λ

T
s )

ft = (ft, ft−1, ft−2, ..., ft−T )
0 λf = (λ

0
f ,λ

1
f , ...,λ

T
f )

ut = (ut, ut−1, ut−2, ..., ut−T+1)0 λu = (λ
0
u,λ

1
u, ...,λ

T−1
u )

There are only T − 1 lags for ut since ut−T = ft after T periods.

E.2 Kalman Filter

We adopt a notation similar to Hamilton [1994, chapter 13]. Similarly to the

two-period case, let Yi
t be a vector of observable variables (present and past) for

investor i and ξt be a vector of unobservables. The components of these vectors
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are however different than in the two-period model. The objective is to determine

the estimate of unobservables based on a linear combination of observables, i.e.,

Eit(ξt) = AY
i
t. In this case, the vectors of observables and unknowns are

Yi
t =

³
st, ft, v

i
t, st−1, ft−1, v

i
t−1, ..., st−T , ft−T , v

i
t−T

´0
ξt = (ut, ut−1, ..., ut−T , bt)0

We use the following linear state-pace representation:

ZYi
t = H0ξt +wi

t (52)

ξt = Fξt−1 + εt (53)

where

wi
t = (0, 0, ε

v,i
t )

0 εt = (ε
u
t , 0, ..., 0, ε

b
t)
0

Z =


1 −λ0f 0 −λ1s −λ1f 0 λ2s λ2f 0 ... ... bTs bTf 0

0 1 0 0 0 0 0 0 0 ... ... 0 0 0

0 0 1 0 0 0 0 0 0 ... ... 0 0 0



H0 =


λ0u λ1u λ2u ... λuT−1 0 λb

0 0 0 ... 0 1 0

1 0 0 ... 0 0 0

 F =



1 + ρ −ρ 0 ... 0 0 0

1 0 0 ... 0 0 0

0 1 0 ... 0 0 0

... ... ... ... ... ... ...

0 0 0 ... 1 0 0

0 0 0 ... 0 0 ρb


The first row of (52) represents the exchange rate equation (51), the second row

ut−T = ft, and the third row the private signal (10).
We also define the variance-covariance matrices:

R ≡ var(wi
t) =


0 0 0

0 0 0

0 0 σ2v

 Q ≡ var(εt) =



σ2v 0 ... 0 0

0 0 ... 0 0

... ... ... ... ...

0 0 ... 0 0

0 0 ... 0 σ2b


Define the conditional variance-covariance matrices of ξt in the steady state as

P = var(ξt|It) and eP = var(ξt|It−1), where It and It−1 represent the information
available at t and t− 1. From Hamilton eq. (13.2.15), we have:

Eit(ξt) = E
i
t−1(ξt) +M

h
ZYi

t −H0Eit−1(ξt)
i

(54)
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whereM and P are defined by (49) and (50) and:

eP = FPF0 +Q (55)

We need to solve for the matrix A in Eit(ξt) = AYi
t. Using Eit−1(ξt) =

FEit−1(ξt−1) from (53), (54) gives:

AYi
t = FAYi

t−1 +MZY
i
t −MH0FAYi

t−1 =

MZYi
t + [FA−MH0FA]Yi

t−1 (56)

We set T sufficiently large such that the last 3 columns of A are negligible

(less that 10−5). Thus, we can set the last 3 elements of Yi
t−1 to zero in the above

equation. Define fYi
t−1 as Y

i
t−1 with the last 3 elements set equal to zero. We then

define a transformation matrix U such that fYi
t−1 = UY

i
t, so that (56) implies:

A =MZ+ FAU−MH0FAU (57)

The matrices P, P̃ and A can be solved from (50), (55) and (57) for a given

exchange rate equation.

E.3 Optimal asset demand

The analysis here draws on Wang [1994, Appendix A]. Investor i maximizes (13)

subject to (14). The Bellman equation is

U it = max
n
−e−γcit + βEtU

i
t+1

o
where the maximization is done with respect to cit and b

i
t. We conjecture that the

value function is:

U it = −α1 exp
½
−α2wit −

1

2
Yi
tVY

i0
t

¾
(58)

Define the excess return on foreign bonds as qt+1 = st+1 − st + i∗t − it. Then using
(14) we have:

U it+1 = −α1 exp
½
−α2(1 + it)wit + α2c

i
t − α2[f(m̃

i
t)− itm̃i

t]− α2b
i
tqt+1 −

1

2
Yi
t+1VY

i0
t+1

¾
(59)
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Maximization over m̃i
t gives f

0(m̃i
t) = it, which leads to the same aggregate money

demand function as before. Since it = r is constant, the term −α2[f(m̃i
t) − itm̃i

t]

is a constant, which we will denote K below.

We now want to express the last two terms of (59) as a function of current

observables Yi
t. Using i

∗
t − it = (ft − st)/α, we get:

qt+1 = st+1 − 1 + α

α
st +

ft
α

(60)

We can then use (51) to substitute for st+1. We decompose qt+1 into expected and

unexpected components. Let us define the vector of shocks ²it+1 = (ε
u
t+1, ε

vi
t+1, ε

b
t+1,

eξt−
Eit(

eξt))0 and eξt = (ut, ut−1, ..., ut−T+1)0. After a few substitutions we get:
qt+1 = Θ01Y

i
t +Θ0

2E
i
t(ξt) +Θ0

3²
i
t+1 (61)

Since Eit(ξt) = AY
i
t, we get:

qt+1 = Θ0Yi
t +Θ0

3²
i
t+1 (62)

where Θ ≡ Θ1 +A
0Θ2.

Similarly to qt+1 we can express st+1, ft+1, and v
i
t+1 as functions of Y

i
t and ²

i
t+1.

This allows us to express Yi
t+1 in terms of Y

i
t and ²

i
t+1:

Yi
t+1 = N1Y

i
t +N2²

i
t+1

We can then rewrite (59) as:

U it+1 = −α1 exp
 −α2(1 + it)wit + α2c

i
t − α2b

i
tΘ

0Yi
t − 1

2
Yi0
tN

0
1VN1Y

i
t

−α2bitΘ03²it+1 −Yi0
tN

0
1VN2²

i
t+1 − 1

2
²0t+1N

0
2VN2²

i
t+1 +K


(63)

Using the normality of the random variables in ²it+1:

Eit(U
i
t+1) =

−α1
|Σ| 12 |Ω|− 1

2

exp


−α2(1 + it)wit + α2c

i
t − α2b

i
tΘ

0Yi
t − 1

2
Yi0
tN

0
1VN1Y

i
t

+1
2
α22b

i2
t Θ

0
3ΩΘ3 +Y

i0
tN

0
1VN2ΩN

0
2V

0N1Y
i
t

+2α2b
i
tΘ

0
3ΩN

0
2V

0N1Y
i
t +K


(64)

where Σ = var(²it+1) and Ω = [Σ
−1 +N0

2VN2]
−1
. Maximizing this expression with

respect to bit, we get

bit =

h
Θ0 −Θ0

3ΩN
0
2V

0N1

i
Yi
t

α2Θ0
3ΩΘ3

(65)
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The first term in brackets represents the expected return, while the second term

represents the hedge against expected return changes.

After maximizing the Bellman equation with respect to cit and substituting the

result back into the Bellman equation, it is easily verified that our conjecture of

the value function (59) is correct if α2 = γr and

V =
1

1 + r

Ã
(Θ−N0

1VN2Ω
0Θ3)(Θ0 −Θ03ΩN

0
2VN1)

Θ0
3ΩΘ3

+N0
1VN1 −N0

1VN2ΩN
0
2V

0N1

!
(66)

This contains an implicit solution for V.

E.4 Foreign exchange market equilibrium

Foreign exchange market equilibrium implies
R 1
0 b

i
t = bt, where bt is total supply

associated with non-fundamentals based trade. Aggregating (65), this implies

α2Θ
0
3ΩΘ3bt = ω0Yt (67)

where Yt is the average Y
i
t (i.e., v

i
t, v

i
t−1, .. are replaced by ut, ut−1, ...) and the

vector ω is defined as:

ω = Θ−N0
1VN2ΩΘ3.

Equation (67) can be solved for the equilibrium exchange rate:

st = λ0sst−1 + λ0f ft + λ0uut + λ0bbt (68)

with the parameters a function of α2Θ
0
3ΩΘ3 and ω.

E.5 Numerical Solution

In order to solve for the exchange rate equation, we need to simultaneously solve

for the matrices A, P, eP, V, the vectors λf , λu, λs, and λb. This is done as

follows. For a given V we solve for all the other parameters with the Gauss non-

linear equation system routine NLSYS. The equations solved are (50), (55), (57),

λf = λ0f , λs = λ0s, λu = λ0u and λb = λ0b. We start with V = 0 and solve for the

other parameters. Given the other parameters we then solve for V using (66). The
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solution to (66) is found as follows. We first set V = 0 on the right hand side.

The expression then gives us a new V on the left hand side. We then substitute

this on the right hand side, and so on, until it converges to the solution. Once we

obtain the solution of V to (66), we use the NLSYS routine to solve again for the

other parameters. After that we compute a new V from (66), and so on, until the

process converges (with changes in parameters becoming negligibly small from one

iteration to the next).

E.6 Infinite Horizon Results

The results for the infinite horizon model are practically identical to those for the

overlapping generations model. In order to illustrate this, we report some results

based on the benchmark parameterization. Two points need to be made about

parameter choices. First, the γ in the infinite horizon model is not exactly the same

as the γ in the overlapping generations model. In the infinite horizon model α2 =

γr is the rate of absolute risk-aversion with respect to wealth, which is comparable

to the absolute risk-aversion parameter γ in the overlapping generations model.

We therefore set α2 to the same value as γ in the overlapping generations model.

Second, a solution to (66) requires us to set the real interest rate r. We set it at

0.01, although results are not sensitive to this.

The magnification factor of the impact of b-shocks on the exchange rate is

7.2328 for the overlapping generations model and 7.3225 for the infinite horizons

model. The contribution of b-shocks to var(st+1−st) is 69.37% for the overlapping
generations model and 68.67% for the infinite horizon model. Finally, the half-

life of the impact of b-shocks on the exchange rate is 2.9522 for the overlapping

generations model and 2.9275 for the infinite horizon model.
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Benchmark
parameterization

σb 0.01

σv 0.08

σu 0.01

ρ 0

ρb 0.8

α 10

γ 500

T 8

Table 1: Parameterization
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